【数据结构】单链表的层层实现!! !

news2024/11/16 22:38:00

在这里插入图片描述
关注小庄 顿顿解馋(●’◡’●)

上篇回顾
我们上篇学习了本质为数组的数据结构—顺序表,顺序表支持下标随机访问而且高速缓存命中率高,然而可能造成空间的浪费,同时增加数据时多次移动会造成效率低下,那有什么解决之法呢?这就得引入我们链表这种数据结构

文章目录

  • 一.何为链表
    • 🏠 链表概念
    • 🏠 链表的分类![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/6102a54bc82c4f25abb7816d1d2d0ebc.png)
  • 二.单链表的实现
    • 🏠 链表的打印
    • 🏠 链表的头插和尾插
    • 🏠 链表的尾删和头删
    • 🏠 链表指定位置的插入和删除
    • 🏠 链表的查找
    • 🏠 链表的销毁
    • `注: 这里要保存好下一个结点地址,销毁后就能继续遍历`
  • 三.单链表的分析以及与顺序表的比较
    • 🏠 单链表的优缺点
    • 🏠 单链表与顺序表的比较

一.何为链表

🏠 链表概念

概念:链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表
中的指针链接次序实现的 。

特点:物理结构不一定连续,逻辑结构连续
在这里插入图片描述
我们的链表结构类似我们的火车,有头有尾,中间每个结点被有序链接;与火车不同的是,链表的结点可能不是紧挨着的。

在这里插入图片描述

类似这样,我们可以得出:
1.每个结点由数据和下一结点地址两部分组成,而每个结点构成了一个链表。
2.每个结点保存的是下一个结点的地址,这样就能找到下一个结点,最后为空就停止
3.每个结点的地址不是连续的,可以体现出链表的物理结构不一定连续

注:我们的结点一般是在堆区开辟的,因为此时你在程序结束前不free就会一直存在这块空间,同时可根据需要灵活申请结点存数据。

这样我们就可以用一个结构体封装每个结点:

typedef int Datatype;
typedef struct ListNode
{
	Datatype x;
	struct ListNode* next;
}Node;

注: 这里我们可以用typedef来重命名我们要存储的数据类型,这样对于不同数据的操作我们只要改typedef即可。

🏠 链表的分类在这里插入图片描述

我们根据链表三个特点:1.带头不带头 2.单向还是双向 3.循环还是不循环 组合成了如上的8种链表
本篇博客,我们要实现的是单向不带头不循环链表(单链表),至于什么是带头,双向,循环我们下回双链表再进行讲解


二.单链表的实现

无头+单向+不循环链表的增删差改

🏠 链表的打印

  • 链表数据的打印

这个接口就很好的体现了结点结构保存指针的妙处了~

//链表的打印
void SLTPrint(Node* phead)
{
	asser(phead);
	Node* cur = phead;
	while (cur)
	{
		printf("%d ", cur->x);
		cur = cur->next;
	}
}

🏠 链表的头插和尾插

  • 链表的尾插

在这里插入图片描述
对于链表的尾插要注意几个问题:1.申请新结点 2.链表是否为空

解决方法:1.对于链表为空,直接让申请的新节点作为头节点 2.对于不为空的链表,首先要找到尾结点,再进行插入 3.对于申请新节点,我们后续的头插也要使用我们可以封装成一个接口,同时结点在堆区申请,调用完接口就不会释放了。

//申请新节点
Node* BuyNode(Datatype x)
{
	Node* newnode = (Node*)malloc(sizeof(Node));
	if (newnode == NULL)
	{
		perror("malloc failed");
		return;
	}
	newnode->next = NULL;
	newnode->x = x;
	return newnode;
}

void SLTPushBack(Node** pphead, Datatype x)
{
	assert(pphead);
	//申请新节点
	Node* newnode = BuyNode(x);
	//链表为空
	if (NULL == *pphead)
	{
		*pphead = newnode;
		return;
	}
	//链表不为空:1.找尾巴结点2.插入新节点
	Node* ptail = *pphead;
	while (ptail->next)
	{
		ptail = ptail->next;
	}
	ptail->next = newnode;
}

思考:这里为什么传二级指针?如果不传二级指针呢?

void SLTNPushBack(Node* pphead, Datatype x)
{
	
	//申请新节点
	Node* newnode = BuyNode(x);
	//链表为空
	if (NULL == pphead)
	{
		pphead = newnode;
		return;
	}
	//链表不为空:1.找尾巴结点2.插入
	Node* ptail = pphead;
	while (ptail->next)
	{
		ptail = ptail->next;
	}
	ptail->next = newnode;
}
int main()
{
	Node* n1 = NULL;
	SLTNPushBack(n1,1);
	return 0;
}

在这里插入图片描述
经过观察传一级指针版本的调用前后,我们发现n1这个指针变量存储的值并没发生改变,究其原因如下图
在这里插入图片描述

  • 链表的头插
    ,在这里插入图片描述
    *对于链表的头插要注意的问题:1.申请新节点 2.链表释放为空 *

解决方法:1.链表为空时,申请的新结点作为头结点 2.链表不为空时,让newnode->next指向原来头节点,再让newnode成为新的头节点。

void SLTPushFront(Node** pphead, Datatype x)
{
	assert(pphead);
	//申请新节点
	Node* newnode = BuyNode(x);
	//链表为空
	if (NULL == *pphead)
	{
		*pphead = newnode;
		return;
	}
	newnode->next = *pphead;
	*pphead = newnode;
}

🏠 链表的尾删和头删

  • 链表的尾删
    在这里插入图片描述
    对于链表的尾删,我们需要分三种情况!

1.链表为空时此时删不了直接退出
2.链表只有一个结点时,释放头节点,置phead为空
3.链表有多个结点时,我们需要遍历链表找到尾结点的前置结点,先释放尾节点再将前置结点的next置为空
注:不能先将前置结点的next置为空,再释放尾结点,此时就找不到尾结点的地址了。

//链表的尾删和头删
void SLTPopBack(Node** pphead)
{
	assert(pphead);
	assert(*pphead);//判断链表不为空
	if ((*pphead)->next == NULL)
	{
		free(*pphead);
		*pphead = NULL;
		return;
	}
	Node* pre = *pphead;
	while (pre->next->next)
	{
		pre = pre->next;
	}
	free(pre->next);
	pre->next = NULL;
}
  • 链表的头删

在这里插入图片描述
对于链表的头删,分为两种情况就可以了,因为有了phead很方便~

1.链表为空时,删不了直接断言下
2.链表不为空时,记录头节点的下一个位置,先释放头节点,再更换phead指向的位置

注:这里也不能先更新phead再释放头结点

void SLTPopFront(Node** pphead)
{
	assert(pphead);
	assert(*pphead);
	Node* pNext = (*pphead)->next;
	free(*pphead);
	*pphead = pNext;
}

🏠 链表指定位置的插入和删除

在这里插入图片描述

1.链表为空时,无法插入
2.pos位置结点刚好是头结点,直接头插或头删
3.pos位置结点不是头节点,需要找到pos位置的前置结点,记录位置。

void NodeInpos(Node** pphead, Node* pos, Datatype x)
{
	assert(pphead);
	//pos不为空 -》 链表一定不能为空
	assert(pos);
	assert(*pphead);
	//建立一个新节点
	Node* newnode = BuyNode(x);
	//pos刚好是头结点的情况
	if (*pphead == pos)
	{
		//运用头插
		NodeinFront(pphead,x);
		return;
	}
	//pos刚好不是头结点
	//1.先找出pos前面的结点pre  2.newnode->next = pre->next 3.pre-<next = newnode
	Node* pre = *pphead;
	while (pre->next != pos)
	{
		pre = pre->next;
	}
	newnode->next = pre->next;
	pre->next = newnode;
}

void NodeDelpos(Node** pphead, Node* pos)
{
	assert(pphead);
	assert(pos);
	assert(*pphead);
	//pos刚好是第一个结点 执行头删
	if (*pphead == pos)
	{
		NodeDelFront(pphead);
		return;
	}
	//pos不是第一个结点 1.先找到那个pos前面结点pre 2.pre->next = pos->next 3.free
	Node* pre = *pphead;
	while (pre->next != pos)
	{
		pre = pre->next;
	}
	pre->next = pos->next;
	free(pos);
	pos = NULL;
}

🏠 链表的查找

Node* NodeFind(Node** phead, Datatype x)
{
	assert(phead);
	//遍历链表
	Node* pcur = *phead;
	while (pcur)
	{
		if (pcur->data == x)
		{
			return pcur;
		}
		pcur = pcur->next;
	}
	//找不到则返回NULL
}

这里建议用一个临时变量来遍历~

🏠 链表的销毁

void NodeDestroy(Node** pphead)
{
	assert(pphead);
	assert(*pphead);
	//1.创一个临时变量存pcur->next的地址
	Node* pcur = *pphead;
	while (pcur)
	{
		Node* next = pcur->next;
		free(pcur);
		pcur = next;
	}
	*pphead = NULL;
}

注: 这里要保存好下一个结点地址,销毁后就能继续遍历

三.单链表的分析以及与顺序表的比较

🏠 单链表的优缺点

通过实现我们的单链表,我们发现单链表有以下优点

1.单链表不存在空间浪费(根据需求灵活在堆上申请新结点)
2.单链表的任意插入和删除效率高
(分析: 这里是已经确定插入的位置,对于链表只需改变指针的指向就能实现插入和删除,时间复杂度是O(1),而数组插入和删除需要遍历数组,时间复杂度是O(N)

单链表也不是万能的,它在一些应用场景也发挥不出来作用

1.不支持随机访问
2.缓存命中率低
3.查找效率低

总结:链表适用于频繁任意插入和删除的场景,不适用于随机访问和查找

🏠 单链表与顺序表的比较

单链表顺序表
物理空间不一定连续物理空间一定连续
不支持随机访问支持下标随机访问
插入和删除效率高 O(1)插入和删除效率低 O(N)
缓存命中率低缓存命中率高
无空间的浪费可能造成数据丢失和空间浪费
缓存利用率高

综上 我们可以根据场景需求选择不同的结构,灵活运用数据~


本次分享到这结束了,下篇我们将讲解双向链表,不妨来个一键三连捏

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1501756.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

devops-Maven【部署及配置】

1、准备maven工具包&#xff0c;Maven官网下载Maven的安装包 Maven – Download Apache Maven Index of /maven (apache.org) 选择后缀是.bin.tar.gz的文件下载&#xff0c;此处下载的版本是3.9.6。 2、安装maven的目录下&#xff0c;建一个Maven路径&#xff0c;然后把压缩…

打开stable diffusion webui时,提示缺少clip或clip安装不上怎么办

在当前数字化时代&#xff0c;软件工具的应用已经成为人们日常生活和工作中不可或缺的一部分。而在使用各种软件工具的过程中&#xff0c;遇到一些技术性问题也是常有的事情。比如&#xff0c;在打开 Stable Diffusion WebUI 这样一个功能强大的工具时&#xff0c;有时会遇到缺…

【win11开启telnet】‘telnet‘ 不是内部或外部命令,也不是可运行的程序 或批处理文件。

解决Windows 11上的’telnet’问题 遇到了一个在Windows 11上常见的问题&#xff0c;那就是尝试使用telnet命令时&#xff0c;出现了以下的错误消息: ‘telnet’ 不是内部或外部命令&#xff0c;也不是可运行的程序 或批处理文件。 解决方案 打开“控制面板”。(Win R -&g…

C语言代码:玫瑰花

前文 在古希腊神话中&#xff0c;玫瑰花集爱与美于一身&#xff0c;既是美神的化身&#xff0c;又溶进了爱神的血液&#xff0c;所以它所代表的含义是爱情。 我们应该用玫瑰花来表达我们的爱意&#xff0c;但是好多的恋人都是因为异地而没有办法去买一束新鲜的玫瑰去送给自己的…

StarRocks实战——欢聚集团极速的数据分析能力

目录 一、大数据平台架构 二、OLAP选型及改进 三、StarRocks 经验沉淀 3.1 资源隔离&#xff0c;助力业务推广 3.1.1 面临的挑战 3.1.2 整体效果 3.2 稳定优先&#xff0c;监控先行&#xff0c;优化运维 3.3降低门槛&#xff0c;不折腾用户 3.3.1 与现有的平台做打通 …

Arm:初识Keil MDK Vision 6及VScode应用Keil 6(Keil Studio for VS Code安装与使用)

系列文章目录 目录 系列文章目录 前言 一、 Keil MDK Vision 6是什么&#xff1f; 二、Keil MDK Vision 6的组合 2.最值得一看的更新就是VScode插件 三、Keil MDK Vision 6与VScode的组合能碰撞出火花吗&#xff1f;&#xff08;Keil Studio for VS Code&#xff09; 前…

HBase安装,配置,启动,检查

目录: 一、HBase安装&#xff0c;配置 1、下载HBase安装包 2、解压&#xff0c;配置环境变量并激活 3、hbase 配置 4、将hadoop和zookeeper的配置文件创建软连接放在hbase配置目录 5、配置 regionserver 二、HBase启动与关闭&#xff0c;安装检验 1、启动关闭hbase的命令 2、 检…

关于手机是否支持h264的问题的解决方案

目录 现象 原理 修改内容 现象 开始以为是手机不支持h264的编码 。机器人chatgpt一通乱扯。 后来检查了下手机&#xff0c;明显是有h264嘛。 终于搞定&#xff0c;不枉凌晨三点起来思考 原理 WebRTC 默认使用的视频编码器是VP8和VP9&#xff0c;WebRTC内置了这两种编码器…

Java 学习和实践笔记(31):封装(encapsulation)

面向对象的三大特点&#xff1a;继承、封装、多态。前面学了继承&#xff0c;现在讲封装。 封装encapsulation一词来自于capsule&#xff0c;胶囊&#xff0c;小密器&#xff0c;密闭的空间。 封装的理念&#xff1a;高内聚&#xff0c;低耦合。 高内聚就是类的内部数据操作…

Python是编译型还是解释型?——跟老吕学Python编程

Python是编译型还是解释型&#xff1f; 编译型语言和解释型语言的概念编译型语言的定义解释型语言的定义 编译型语言和解释型语言的区别主要体现在程序的执行过程&#xff1a;编译型语言解释型语言 Python的编译和执行过程Python的解释器Python的交互式解释器Python与编译型语言…

thingsboard如何自定义udp-transport

0、参考netty实现udp的文章 https://github.com/narkhedesam/Netty-Simple-UDP-TCP-server-client/blob/master/netty-udp/src/com/sam/netty_udp/server/MessageDecoder.java 调试工具使用的是:卓岚TCP&UDP调试工具 1、在common\transport下面创建udp模块,仿照mqtt的创…

千兆网络变压器的特点

不要选错了&#xff0c;同款的小24PIN工业级千兆网络变压器有两种&#xff0c;外壳尺寸、工程参数完全相同。很多客户对这两款产品傻傻分不清&#xff0c;今天我就来详细介绍一下&#xff1a; HX82409S特点有三个&#xff1a; 一&#xff0c;采用单环设计&#xff0c;只有一颗…

部署 LVS(nginx)+keepalived高可用负载均衡集群

目录 一、集群的概述 1、什么是集群 2、普通集群与负载均衡集群 2.1 普通集群&#xff08;Regular Cluster&#xff09; 2.2 负载均衡集群&#xff08;Load Balancing Cluster&#xff09; 2.3 高可用集群&#xff08;High Availability Cluster&#xff09; 2.4 区别 …

SpringMVC03、HelloSpring

3、HelloSpring 3.1、配置版 新建一个Moudle &#xff0c; springmvc-02-hello &#xff0c; 添加web的支持&#xff01; 确定导入了SpringMVC 的依赖&#xff01; 配置web.xml &#xff0c; 注册DispatcherServlet <?xml version"1.0" encoding"UTF-8…

Leetcode3069. 将元素分配到两个数组中 I

Every day a Leetcode 题目来源&#xff1a;3069. 将元素分配到两个数组中 I 解法1&#xff1a;模拟 简单地按题意模拟。 代码&#xff1a; /** lc appleetcode.cn id3069 langcpp** [3069] 将元素分配到两个数组中 I*/// lc codestart class Solution { public:vector<…

详解HashMap、Hashtable和ConcurrentHashMap的区别

前言 本篇博客博主将详细地解释HashMap、Hashtable和ConcurrentHashMap的区别&#xff0c;坐好板凳发车啦~~ 在多线程使用哈希表&#xff0c;HashMap本身就不是线程安全的&#xff1b; 在多线程环境下使用哈希表可以使用&#xff1a;Hashtable和ConcurrentHashMap。 一.Has…

python学习 the fifth day

七、数据容器&#xff1a;dict字典 1.字典的定义 为什么需要字典&#xff1f; 通过key&#xff08;字典&#xff09;&#xff0c;取到对应的value 字典的key和value可以是任意数据类型&#xff08;key不可以是字典&#xff09; 字典的嵌套&#xff1a; #字典的嵌套dictiona…

Langchain-Chatchat本地搭建ChatGLM3模型和提取PDF内容

文章目录 1、软件要求2、安装CUDA2.1、安装gcc2.2、安装CUDA 3、安装Anaconda33.1、下载Anaconda33.2、创建python虚拟环境 4、部署系统4.1、下载源码4.2、安装依赖4.3、下载模型4.4、初始化配置和知识库4.4.1、初始化配置4.4.2、初始化知识库 4.5、运行4.6、运行4.6.1、启动4.…

TimescaleDB 开源时序数据库

文章目录 1.TimescaleDB介绍2.Hypertable 和 chunk3.Hypertable4.Hypertable操作 开源中间件 # TimescaleDBhttps://iothub.org.cn/docs/middleware/ https://iothub.org.cn/docs/middleware/timescale/timescale-summary/1.TimescaleDB介绍 TimescaleDB是基于PostgreSQL数据…

在vue2中使用tailwindcss(完整教程)

如果你看过好多教程之后&#xff0c;还是报错&#xff0c;无法使用tailwindcss&#xff0c;我希望本教程可以让你成功上岸。 环境要求 node&#xff1a;>v14.17.0 安装tailwindcss 由于最新的tailwind css使用post css 8版本&#xff0c;vue2框架暂时还不支持&#xff0…