UniSA: Unified Generative Framework for Sentiment Analysis

news2025/3/15 0:21:55

文章目录

  • UniSA:统一的情感分析生成框架
    • 文章信息
    • 研究目的
    • 研究内容
    • 研究方法
      • 1.总体架构图
      • 2.基准数据集SAEval
      • 3.Task-Specific Prompt
      • 4.Modal Mask Training
      • 5.Pre-training Tasks
        • 5.1Mask Context Modeling
        • 5.2Sentiment Polarity Prediction
        • 5.3Coarse-grained Label Contrast Learning
        • 5.4Cross-task Emotion Prediction
    • 结果与讨论
    • 代码和数据集

UniSA:统一的情感分析生成框架

总结:原理=>所有子任务整合起来,数据集就变得很大了,让模型学习这些所有的数据,模型的情感能力就上去了,关键在于怎么整合?训练好之后,不管是情感分析的什么任务(输入都会被Task-Specific Prompt统一,输出都有四个标签,一个真实标签,三个伪标签),通过这个框架都可以实现不错的结果。

文章信息

作者:Zaijing Li,Fengxiao Tang

单位:Central South University(中南大学)

会议/期刊:Proceedings of the 31st ACM International Conference on Multimedia(MM 2023)(CCF A)

题目:UniSA: Unified Generative Framework for Sentiment Analysis

年份:2023

研究目的

探究情感分析的多任务统一建模,将情感分析的子任务整合到一个单一的模型中,来提高模型的情感能力。

【对情感分析的所有子任务进行统一建模存在三个主要挑战:1.每个子任务的输入和输出形式各不相同。2.多模态的模态对齐问题。3.数据集注释偏差。

  • 引入了特定任务提示方法,将所有子任务视为生成任务并进行联合训练,来统一不同子任务的输入和输出形式
  • 通过扩展生成式Transformer(基础的Transformer模型)去处理多模态数据,提出了一种模态掩码训练方法学习模态间的关系,来解决模态对齐的问题。
  • 引入数据集嵌入消除不同数据集之间的注释偏差。】

研究内容

  • 提出了一个多模态生成框架 UniSA,重新耦合情感分析的各个子任务(对话中的情感识别 (ERC)、基于方面的情感分析 (ABSA) 和多模态情感分析 (MSA))实现多任务统一建模

  • 提出了一种新颖的情感相关预训练任务(Pre-training Tasks),让模型能够学到跨子任务的通用情感知识。

  • 构建了一个基准数据集 SAEval,以统一的格式包含了各种情感分析子任务的基准数据集。

研究方法

1.总体架构图

image-20240305162432037

为了处理视觉、声学和文本的跨模态输入,将原始的Transformer编码器修改为多模态编码器,并引入了模态掩码训练方法(该方法使得模型能够有效地学习到不同模态之间的关系)。通过任务特定提示( Task-Specific Prompt )方法来规范所有子任务的输入格式。为了解决数据集之间的偏差,在输入中嵌入了一个数据集,以区分不同的数据集。

2.基准数据集SAEval

基准数据集SAEval的构建是将来自不同情感分析子任务的多个数据集统一以字典格式存储。(该词典包括"Task Type"、"Dataset ID "、“Text”、“Audio”、“Image"等关键词。对于ERC数据集,额外的信息如” Context “,” Speaker ID “和” Utterance index "被包含来确定当前查询的会话信息。)数据集示例:

image-20240305172447131

3.Task-Specific Prompt

通过任务特定提示(Task-Specific Prompt)统一所有子任务的输入流,并将所有子任务转化为生成任务来统一子任务的输出形式。【作用就是统一输入与输出】

image-20240305170757602

任务特定提示包括三个组成部分:任务标识符Z、答案集Y和输入流X。

  • 标识符Z由特殊的标记组成(包括Task type,Data id ,Speaker id)。
  • 答案集Y是每个数据集的特定标签集合,用于指导模型生成预期结果。
  • 输入流X代表输入的文本、声音、视觉和上下文。

L = { Z , Y , X } L=\{Z,Y,X\} L={Z,Y,X}

4.Modal Mask Training

当给定一个多模态输入 I i = I i t , I i a , I i v I_{i}=I_{i}^{t},I_{i}^{a},I_{i}^{v} Ii=Iit,Iia,Iiv时( I i m , m ∈ t , a , v I_i^m,m\in{t,a,v} Iim,mt,a,v代表时间 i i i的单模态输入),要掩蔽一个或多个模态的输入,这样将产生七种模态设置,即, I i t , I i a , I i v , I i a + I i v , I i t + I i a , I i t + I i v I_i^t,I_i^a,I_i^v,I_i^a+I_i^v,I_i^t+I_i^a,I_i^t+I_i^v Iit,Iia,Iiv,Iia+Iiv,Iit+Iia,Iit+Iiv I i t + I i a + I i v I_i^t+I_i^a+I_i^v Iit+Iia+Iiv。由于文本模态很重要,所以只使用其中的四种设置,也就是 I i t , I i t + I i a , I i t + I i v , I i t + I i a + I i v . I_{i}^{t},I_{i}^{t}+I_{i}^{a},I_{i}^{t}+I_{i}^{v},I_{i}^{t}+I_{i}^{a}+I_{i}^{v}. Iit,Iit+Iia,Iit+Iiv,Iit+Iia+Iiv.通过这样的方式,多模态数据在训练阶段就有了四种不同的输入形式,扩展了训练数据的模态多样性,并可以有效应对实际场景中多种数据中某些模态的缺失。

5.Pre-training Tasks

预训练分为两个阶段:

  • 第一阶段是粗粒度情感感知预训练(coarse-grained emotion perception pre-training),包括掩码上下文建模情感极性预测粗粒度标签对比学习。第一阶段是为了让模型获得初步的情感分类能力。(情感是极性不变,组合具有相同情感极性的查询即相同情感极性的样本)不会改变两者。因此,根据情感极性将所有数据集划分为不同的数据池。然后,我们从同一个数据池中随机抽取两个查询组合成一个新的查询,用于预训练阶段一)
    L s t a g e 1 = L M C M + L S P P + L C C L . \mathcal{L}_{stage1}=\mathcal{L}_{MCM}+\mathcal{L}_{SPP}+\mathcal{L}_{CCL}. Lstage1=LMCM+LSPP+LCCL.

  • 第二阶段是细粒度情感感知预训练(Pre-training Stage Two),包括掩码上下文建模跨任务情感预测。其目的是让模型获得细粒度情感分类能力。
    L s t a g e 2 = L M C M + L C E P . \mathcal{L}_{stage2}=\mathcal{L}_{MCM}+\mathcal{L}_{CEP}. Lstage2=LMCM+LCEP.

5.1Mask Context Modeling

掩码上下文建模(MCM)可以随机掩码输入的文本、声学、视觉和上下文模态中的标记,以鼓励模型学习预测被掩码的标记(token)。

image-20240305205646466
L M C M ( θ ) = − ∑ m = 1 M log ⁡ ( P θ ( w m ∣ w n ) ) , \mathcal{L}_{MCM}(\theta)=-\sum_{m=1}^M\log{(P_\theta(w_m|w_n))}, LMCM(θ)=m=1Mlog(Pθ(wmwn)),

符号含义
1 ≤ m ≤ M 1\le m \le M 1mM表示掩码索引,M是掩码标记的数量
w m w_m wm被屏蔽的token
w n w_n wn未被屏蔽的token
P θ P_\theta Pθ模型的输出分布, θ \theta θ代表可以优化的模型参数
5.2Sentiment Polarity Prediction

为了鼓励模型学习区分不同的情感类别,将数据集的细粒度情感标签转换为情感极性标签,将其映射为正面、负面和中性类别。然后,在情感极性预测(SPP)任务中,训练模型预测输入的情感极性类别。
L S P P ( θ ) = − log ⁡ ( P θ ( s ∣ w n ) ) . \mathcal{L}_{SPP}(\theta)=-\log{(P_{\theta}(s|w_{n}))}. LSPP(θ)=log(Pθ(swn)).

5.3Coarse-grained Label Contrast Learning

在粗粒度对比学习任务中,将编码器的输出作为每个样本的表征,并在一个批次中计算具有相同情感标签的样本之间的欧氏距离。然后,最大化具有相同情感标签的样本之间的相似性。(让模型学会区分不同的情感类别

Alt

L C C L ( θ ) = ∑ j = 1 b ∑ k = 1 b ( d i s t a n c e ( j , k ) ∗ m a s k ( j , k ) ) ∑ k = 1 b d i s t a n c e ( j , k ) , \mathcal{L}_{CCL}(\theta)=\sum_{j=1}^b\frac{\sum_{k=1}^b(distance(j,k)*mask(j,k))}{\sum_{k=1}^bdistance(j,k)}, LCCL(θ)=j=1bk=1bdistance(j,k)k=1b(distance(j,k)mask(j,k)),

符号含义
b b b一个批次的大小
d i s t a n c e ( j , k ) distance(j,k) distance(j,k)样本j和样本k之间的欧氏距离
m a s k ( j , k ) mask(j,k) mask(j,k)当样本j和样本k具有相同的情感标签时, m a s k ( j , k ) mask( j , k) mask(j,k)为1,否则为0
5.4Cross-task Emotion Prediction

在跨任务情感预测(CEP )任务中,首先将编码器的输出作为每个样本的表征,并对每个子任务的样本进行聚类(每个子任务不同的标签将聚成一类)。然后,对于每个样本计算其表征与每个子任务的每个标签簇之间的距离。将距离最小的簇对应的标签作为每个子任务样本的伪标签。

给定一个子任务集 D = { A B S A , M S A , E R C , C A } D=\lbrace ABSA,MSA,ERC,CA \rbrace D={ABSA,MSA,ERC,CA}​,每个样本输出将有4个标签:一个为原始标签,三个为跨任务伪标签。
L C E P ( θ ) = − ∑ D log ⁡ ( P θ ( E d ∣ w m ) ) , \mathcal{L}_{CEP}(\theta)=-\sum^D\log{(P_\theta(E_d|w_m))}, LCEP(θ)=Dlog(Pθ(Edwm)),
E d E_d Ed表示子任务 d ∈ D d\in D dD中的情感标签。

结果与讨论

斜体是消融实验

  • UniSA模型在每个数据集上的表现与现有的SOTA模型相当,并且可以用相对较少的参数执行所有的情感分析子任务。
  • 将提出的任务特定提示方法替换为任务令牌,证明了任务特定提示方法对模型性能的影响。
  • 去掉模态掩码训练方法,验证了模态掩码的有效性。
  • 通过引入了三个额外的LSTM作为音频、图像和上下文输入的编码器,探索不同输入形式对模型性能的影响,证明了Multimodal transformer encoder的有效性。
  • 通过消融预训练的第一阶段与第二阶段,证明了各个预训练阶段的有效性。
  • 通过从多模态信号中剔除声学和视觉模态,验证了多模态对模型性能的影响。
  • 通过在情感分析的下游任务上进行实验,表明UniSA在预训练阶段学习到了跨子任务的共同情感知识,从而在不同的情感分析子任务上表现出良好的泛化性。

代码和数据集

代码:https://github.com/dawn0815/UniSA

数据集:

image-20240306160304953

实验环境:NVIDIA RTX V100(32G)

😃😃😃

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1496427.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Object.keys()的用法

1、语法 Object.keys(obj) 参数:要返回其枚举自身属性的对象 返回值:一个表示给定对象的所有可枚举属性的字符串数组 2、处理对象,返回可枚举的属性数组 let person {name:“张三”,age:25,address:“深圳”,getName:function(){}} Obj…

第七十六 天WAF攻防-权限控制代码免杀异或运算变量覆盖混淆加密传参

第76天 WAF攻防-信息收集&识别&被动探针&代理池&仿指纹&白名单 知识点: 0、WAF介绍&模式&识别&防护等 1、信息收集被动扫描&第三方接口 2、信息收集基于爬虫&文件目录探针 3、信息收集基于用户&代理池&白名单 章…

【QT】定时器事件应用

public&#xff1a;//定时器void timerEvent(QTimerEvent *);private:int id;#include <QTimerEvent> //QWidget 默认不追踪鼠标事件 mylabel::mylabel(QWidget *parent) : QLabel(parent) {this->setMouseTracking(true);//启动定时器//参数1&#xff1a;触发定时器的…

f5——>字符串三角

暴力破解&#xff0c;双层循环&#xff0c;注意复制到新列表用append&#xff0c;这样更不容易出错 格式还是“”.join(str)

本地部署websocket服务端并结合内网穿透实现固定公网地址连接

文章目录 1. Java 服务端demo环境2. 在pom文件引入第三包封装的netty框架maven坐标3. 创建服务端,以接口模式调用,方便外部调用4. 启动服务,出现以下信息表示启动成功,暴露端口默认99995. 创建隧道映射内网端口6. 查看状态->在线隧道,复制所创建隧道的公网地址加端口号7. 以…

leetcode 3068. 最大节点价值之和【树形dp】

原题链接&#xff1a;3068. 最大节点价值之和 题目描述&#xff1a; 给你一棵 n 个节点的 无向 树&#xff0c;节点从 0 到 n - 1 编号。树以长度为 n - 1 下标从 0 开始的二维整数数组 edges 的形式给你&#xff0c;其中 edges[i] [ui, vi] 表示树中节点 ui 和 vi 之间有一…

二维码门楼牌管理系统应用场景:助力紧急服务

文章目录 前言一、紧急服务部门的传统挑战二、二维码门楼牌管理系统的优势三、实际应用案例分析四、未来展望 前言 随着城市化的快速发展&#xff0c;传统的门牌管理系统已无法满足现代社会的需求。二维码门楼牌管理系统的出现&#xff0c;为紧急服务部门&#xff08;如警察、…

鸿道Intewell-Win_V2.1.3_kyland软件版本发布说明

一、软件发布版本信息 版本号&#xff1a;V2.1.3_kyland 版本发布类型&#xff1a;trail试用版本 二、版本特点 适配 E211-1370&#xff08;J6412,8GB&#xff0c;256GB SSD&#xff09;设备 三、运行环境推荐 Intewell developer可以运行在windows7及windows10 64位 四、支…

精品中国货出海wordpress外贸独立站建站模板

旗袍唐装wordpress外贸网站模板 旗袍、唐装、华服wordpress外贸网站模板&#xff0c;适合做衣服生意的外贸公司官网使用。 https://www.jianzhanpress.com/?p3695 劳动防护wordpress外贸独立站模板 劳动防护wordpress外贸独立站模板&#xff0c;劳动保护、劳动防护用品外贸…

个人博客系列-后端项目-用户验证(5)

介绍 创建系统管理app&#xff0c;用于管理系统的用户&#xff0c;角色&#xff0c;权限&#xff0c;登录等功能&#xff0c;项目中将使用django-rest_framework进行用户认证和权限解析。这里将完成用户认证 用户验证 rest_framework.authentication模块中的认证类&#xff…

基于Python实现银行卡识别

在本文中将介绍如何使用Python和深度学习技术来实现银行卡识别功能。银行卡识别是一个在金融、安全等领域具有重要应用的问题&#xff0c;将使用深度学习模型来实现银行卡图像的识别和分类。 目录 引言数据集准备预处理和特征提取模型选择与训练模型评估与性能优化部署与应用 引…

怎么做加密文件二维码?分享文件更安全

怎么做一个加密文件二维码&#xff1f;在日常的工作和生活中&#xff0c;通过扫描二维码来查看或者下载文件的方式&#xff0c;被越来越多的人所使用&#xff0c;一方面是二维码的成本低&#xff0c;另一方面有利于提升便捷性和用户体验。 为了保证内容的隐私性和安全性&#…

Linux学习笔记——基本操作命令

目录 一、Shell 命令基础1、Shell 简介2、Shell 命令格式3、显示系统信息命令4、Shell 使用技巧 二、Linux 文件及目录管理1、Linux操作系统的目录结构2、文件及目录显示类命令3、文件及目录操作类命令4、文件内容的显示和处理5、文件查找类命令 三、vi、vim 编辑器的使用四、文…

以太网帧格式

以太网帧格式 以太网帧格式前导码&#xff08;Preamble&#xff09;帧起始界定符&#xff08;SFD&#xff0c;Start Frame Delimiter&#xff09;以太网帧头目的MAC地址源MAC地址长度/类型 数据段帧检验序列&#xff08;FCS&#xff0c;Frame Check Sequence&#xff09;帧间隙…

Vue全家桶:vue2+vue3全部搞懂:第八篇,重要!正式工程化项目开发——开始怎么写代码

前提&#xff0c;建议先学会前端几大基础&#xff1a;HTML、CSS、JS、Ajax&#xff0c;不然不好懂 这一专栏知识将一次性将vue、vue2、vue3全部讲明白 这一篇内容蛮多&#xff0c;我本人也打算加快学习速度&#xff0c;于是下面大量解释将出自于黑马程序员的视频课堂截图&…

Java面试篇【RabbitMQ】常见面试题(2024最新)

RabbitMQ 1.为什么使用MQ?优点是什么 因为MQ可以异步处理&#xff0c;提高系统吞吐量。 应用解耦&#xff0c;系统之间可以通过消息通信&#xff0c;不关心其他系统的处理。 流量削峰&#xff0c;可以通过消息队列的长度&#xff0c;控制请求量。可以缓解短时间内的高并发请…

热插拔更换ESXI宿主机系统硬盘导致紫屏故障案例一则

关键词 vmware、esxi5.5raid、热插拔、紫屏 华为 CH121V3刀片、SSD硬盘 There are many things that can not be broken&#xff01; 如果觉得本文对你有帮助&#xff0c;欢迎点赞、收藏、评论&#xff01; 一、问题现象 现网vmware云平台一台华为E9000刀箱CH121V3刀片服务…

16-Java命令模式 ( Command Pattern )

Java命令模式 摘要实现范例 命令模式&#xff08;Command Pattern&#xff09;中请求以命令的形式包裹在对象中&#xff0c;并传给调用对象 调用对象寻找可以处理该命令的合适的对象&#xff0c;并把该命令传给相应的对象&#xff0c;该对象执行命令 命令模式是行为型模式&…

面试官让说出8种创建线程的方式,我只说了4种,然后挂了。。。

写在开头 昨天有个小伙伴私信说自己面试挂在了“Java有几种创建线程的方式”上&#xff0c;我问他怎么回答的&#xff0c;他说自己有背过八股文&#xff0c;回答了&#xff1a;继承Thread类、实现Runnable接口、实现Callable接口、使用线程池这四种&#xff0c;但是面试官让说…

艺术与科技的结合,AI绘画图生图怎么样?

AI绘画图生图是指通过人工智能技术生成的具有艺术价值的图像。它可以根据用户提供的参考图像或描述&#xff0c;自动生成具有艺术风格的新图像。这些图像可以是风景、人物、抽象画等各种形式。那么ai绘画图生图到底怎么样&#xff1f; AI绘画图生图的优点在于它可以快速、高效地…