结合大象机器人六轴协作机械臂myCobot 280 ,解决特定的自动化任务和挑战!(下)

news2024/11/18 5:54:16

Limo Pro 小车建图导航

引言

前景提要:我们在上文介绍了使用LIMO cobot 实现一个能够执行复杂任务的复合机器人系统的应用场景的项目,从以下三个方面:概念设计、系统架构以及关键组件。

本文主要深入项目内核的主要部分,同样也主要分为三个部分:机械臂的视觉抓取,LIMO Pro在ROS中的功能,建图导航避障等,以及两个系统的集成。

设备准备

  1. myCobot 280 M5stack
  2. myCobot Adaptive Gripper
  3. myCobot Camera Flange 2.0
  4. LIMO PRO

机械臂视觉抓取

这是机械臂安装 Adaptive Gripper,和 camera flange 2.0之后的样子。

我们是用的camera flange 2.0是一款2D的相机,他并不能够依靠他相机本身来获取到一个物体的三维(长宽高),但我们可以使用标记物来获得到目标物体的都长宽高。常见的有ArUco,STag,AR码,AprilTags。今天我们用STag算法来做视觉识别。

STag标记系统

STag是一个为了高稳定性和精确的三位定位而设计的标记系统。它特别适用于环境中有遮挡和光照变化的情况。

下面有一个视频展示了STag标记码,ARToolKit+,ArUco,RUNE-Tag码在同一个环境下的识别效果。

https://www.youtube.com/watch?v=vnHI3GzLVrY

可以从视频中看出来STag对环境变化的强大适应性和在复杂场景下的高可靠性,使其成为在要求高精度跟踪和定位的应用中的首选。还有一篇论文专门讲解STag稳定的基准标记系统,感兴趣的可以自己点击链接去了解一下。

https://arxiv.org/abs/1707.06292

STag系统可以是适配与ROS,有ROS软件包,用的是c++编写的,也能够支持python进行使用。

C++/ROS:GitHub - bbenligiray/stag: STag: A Stable Fiducial Marker System

Python:GitHub - ManfredStoiber/stag-python: Python Package for STag - A Stable, Occlusion-Resistant Fiducial Marker System

用python 简单写一个例子

import cv2
import stag
import numpy as np

# 加载相机参数
camera_params = np.load("camera_params.npz")
mtx, dist = camera_params["mtx"], camera_params["dist"]

# 初始化STag检测器
stag_detector = stag.detectMarkers(mtx, dist)

# 初始化视频捕获
cap = cv2.VideoCapture(0)
while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break
    
    # 应用相机校正(可选)
    frame_undistorted = cv2.undistort(frame, mtx, dist, None, mtx)
    # 检测STag标记
    (corners, ids, rejected_corners) = stag.detectMarkers(frame_undistorted, 21)
    # 绘制检测到的标记及其ID
    stag.drawDetectedMarkers(frame_undistorted, corners, ids)
    # 绘制被拒绝的候选区域,颜色设为红色
    stag.drawDetectedMarkers(frame_undistorted, rejected_corners, border_color=(255, 0, 0))

    # 显示结果
    cv2.imshow("STag Detection", frame_undistorted)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

标记了STag码之后可以获得标记码四个角的参数,

(array([[[257., 368.],
        [185., 226.],
        [345., 162.],
        [420., 302.]]], dtype=float32),)

给定坐标过后,可以用opencv的‘cv2.solvePnP'函数来计算标记相对于相机的旋转和偏移量。这个函数需要标记的3D坐标(在物理世界中的位置)和相应的2D图像坐标(即检测到的角点),以及相机的内参和畸变系数。solvePnP会返回旋转向量(rvec)和平移向量(tvec),它们描述了从标记坐标系到相机坐标系的转换。这样,就可以根据这些参数计算出标记的位置和朝向。

以下是伪代码方便理解

def estimate_pose(corners):
    #Do some calculations with PnP, camera rotation and offset
    return rvec,tvec
    
def convert_pose_to_arm_coordinates(rvec, tvec):
    # 将旋转向量和平移向量转换为机械臂坐标系统中的x, y, z, rx, ry, rz
    return x, y, z, rx, ry, rz
    
def convert_grab(object_coord_list):
    #Do some calculations to convert the coordinates into grasping coordinates for the robotic arm
    return grab_position
    
    
cap = cv2.VideoCapture(0)
while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break
        
    
    maker = (corners, ids, rejected_corners) = stag.detectMarkers(image, 21)
    
    rvec, tvec = stag.estimate_pose(marker)
    
    object_coord_list = convert_pose_to_arm_coordinates(rvec, tvec)
    grab_position = convert_grab(object_coord_list)
    mycobot.move_to_position(grab_position)

机械臂控制

以上的代码就是大概的抓取的流程,比较复杂的部分解决了,接下来我们处理机械臂的运动控制,用到的是pymycobot库

from pymycobot import MyCobot

#Create an instance and link the robotic arm
mc = MyCobot('com3',115200)

#Control the robotic arm with angle
mc.send_angles(angles_list,speed)

#Control the robotic arm using coordinates
mc.send_coords(coords_list,speed,mode)

#Control gripper,value-0~100
mc.set_gripper_value(value,speed)

因为机械臂的开放接口比较多,我们只需要使用坐标控制,夹爪控制就好了。

Limo Pro 建图导航

完成了机械臂抓取部分的功能,接下来我们要实现小车的建图导航模块了。

首先我们要见图,有了地图之后才能够在地图上进行导航,定点巡航等一些的功能,目前有多种建图的算法,因为我们搭建的场景并不是很大,环境相对于静态我们选择使用gmapping算法来实现。

建图

Gmapping是基于滤波SLAM框架的常用开源SLAM算法。Gmapping有效利用了车轮里程计信息,对激光雷达的频率要求不高,在构建小场景地图时,所需的计算量较小且精度较高。这里通过使用ROS封装了的GMapping功能包来实现limo的建图。

注:以下的功能都是封装好的可以直接使用

首先需要启动雷达,打开一个新终端,在终端中输入命令:

roslaunch limo_bringup limo_start.launch pub_odom_tf:=false

然后启动gmapping建图算法,打开另一个新终端,在终端中输入命令:

roslaunch limo_bringup limo_gmapping.launch

成功启动之后会打开rviz可视化工具,这时候看到的界面如图

这时候就可以把手柄调为遥控模式,控制limo建图了。

构建完地图之后,需要运行以下命令,把地图保存到指定目录:

1、切换到需要保存地图的目录下,这里把地图保存到~/agilex_ws/src/limo_ros/limo_bringup/maps/,在终端中输入命令:

cd ~/agilex_ws/src/limo_ros/limo_bringup/maps/

2、切换到/agilex_ws/limo_bringup/maps 之后,继续在终端中输入命令:

rosrun map_server map_saver -f map1

map1为保存地图的名称,保存地图时应避免地图的名称重复

导航

前面我们用了gmapping来进行建图,我们现在来进行导航。导航的关键是机器人定位和路径规划两大部分。针对这两个核心,ROS提供了以下两个功能包。

(1)move_base:实现机器人导航中的最优路径规划。

(2)amcl:实现二维地图中的机器人定位。

在上述的两个功能包的基础上,ROS提供了一套完整的导航框架,

机器人只需要发布必要的传感器信息和导航的目标位置,ROS即可完成导航功能。在该框架中,move_base功能包提供导航的主要运行、交互接口。为了保障导航路径的准确性,机器人还要对自己所处的位置进行精确定位,这部分功能由amcl功能包实现。

在导航的过程中,运用了两种算法DWA和TEB算法,这两种算法分别处理全局路径和局部路径规划,来保证小车能够安全的前进到目的地,避免与障碍物发生碰撞。

(1)首先启动雷达,在终端中输入命令:

roslaunch limo_bringup limo_start.launch pub_odom_tf:=false

(2)启动导航功能,在终端中输入命令:

roslaunch limo_bringup limo_navigation_diff.launch

启动成功之后会打开rviz界面,如图

我们需要把刚才建的地图给导进去,请打开limo_navigation_diff.launch 文件修改参数, 文件所在目录为:~/agilex_ws/src/limo_ros/limo_bringup/launch。把map02修改为需要更换的地图名称。

开启导航之后,会发现激光扫描出来的形状和地图没有重合,需要我们手动校正,在rviz中显示的地图上矫正底盘在场景中实际的位置,通过rviz中的工具,发布一个大概的位置,给limo一个大致的位置,然后通过手柄遥控limo旋转,让其自动校正,当激光形状和地图中的场景形状重叠的时候,校正完成。操作步骤如图 :

校正完成后

通过2D Nav Goal 设置导航目标点

路径巡检

如果要在一条路上来回运动的话,我们要启用路径巡检功能,后续会使用上这个功能。

(1)首先启动雷达,开启一个新的终端,在终端中输入命令:

roslaunch limo_bringup limo_start.launch pub_odom_tf:=false

(2)启动导航功能,开启一个新的终端,在终端中输入命令:

roslaunch limo_bringup limo_navigation_diff.launch

注:如果是阿克曼运动模式,请运行

roslaunch limo_bringup limo_navigation_ackerman.launch

(3)启动路径记录功能,开启一个新的终端,在终端中输入命令:

roslaunch agilex_pure_pursuit record_path.launch

路径记录结束之后终止路径记录程序,在终端中输入命令为:Ctrl+c

(4)启动路径巡检功能,开启一个新的终端,在终端中输入命令:

注:把手柄调至指令模式

roslaunch agilex_pure_pursuit pure_pursuit.launch

两个系统的集成

上面分布完成了myCobot机械臂视觉的抓取,LIMO的建图导航,路径巡检功能,现在我们需要把它们集成在ROS系统上。我们预设的场景是,LIMO进行定点的巡检,当遇到了标志物的时候停止运动,等待机械臂执行抓取物体,完成之后LIMO移动到下一个点位。

功能节点分布

在ROS(Robot Operating System)中实现一个功能的流程涉及到多个步骤和组件,包括节点(nodes)、话题(topics)、服务(services)、参数服务器(parameter server)和动作(actions)。根据ROS的功能节点架构,我们确定了节点的分布和它们交互的方式:

1. 图像识别节点(Image Recognition Node)

  • 职责:持续接收来自摄像头的图像流,使用图像识别算法(如OpenCV或深度学习模型)来检测特定的标记物。
  • 输入:来自摄像头的图像流。
  • 输出:当检测到标记物时,发布一个消息到一个特定的话题(如/marker_detected)。

2. 控制节点(Control Node)

  • 职责:管理机器人的移动,包括启动、停止和继续巡检。
  • 输入:订阅/marker_detected话题以监听图像识别节点的输出。也可能订阅一个专门用于接收手动控制指令的话题(如/control_commands)。
  • 输出:向机器人底层控制系统(如驱动电机的节点)发送控制命令。

3. 任务执行节点(Task Execution Node)

  • 职责:执行遇到标记物后的特定任务,这些任务可以是数据采集、状态报告等。
  • 输入:监听来自控制节点的指令,这些指令指示何时开始执行任务。
  • 输出:任务完成的状态反馈,可能会发送到控制节点或一个专门的状态话题(如/task_status)。

4. 导航和路径规划节点(Navigation and Path Planning Node)

  • 职责:处理机器人的路径规划和导航逻辑,确保机器人可以在环境中安全移动。
  • 输入:接收来自控制节点的指令,用于启动、停止或调整导航路径。
  • 输出:向机器人底层控制系统发送导航指令,如目标位置、速度和方向。

总结

这个场景算是初步完成了,其实还可以添加许多细节的,比如说在行径的过程中增添一些移动的障碍物,又或者设定一个红绿灯之类的物体,更加接近真实的场景。如果你们觉得有什么需要改善的地方,又或者说你想用 LIMO cobot 来做一些什么,尽管畅所欲言,你的回复和点赞就是我们更新最大的动力!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1492427.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【每日一题】1976. 到达目的地的方案数-2024.3.5

题目: 1976. 到达目的地的方案数 你在一个城市里,城市由 n 个路口组成,路口编号为 0 到 n - 1 ,某些路口之间有 双向 道路。输入保证你可以从任意路口出发到达其他任意路口,且任意两个路口之间最多有一条路。 给你一个整数 n 和二维整数数组 roads ,其中 roads[i] = […

[BUG]vscode插件live server无法自动打开浏览器

问题描述: 点了open with live server但是浏览器没有自动跳出来 http://127.0.0.1:5500/里面是有东西的 解决方法: 配置环境变量,在path中添加program files

MCU最小系统电路设计(以STM32F103C8T6为例)

目录 一、何为最小系统? 二、最小系统电路设计 1.电源 (1)各种名词解释 (2)为什么会有VDD_1 _2 _3区分? (3)Mirco USB (4)5v->3.3v滤波电路 &#…

Unity编辑器功能Inspector快捷自动填充数据和可视化调试

我们有时候可能需要在面板增加一些引用,可能添加脚本后要手动拖动,这样如果有大量的脚本拖动也是不小的工作量 实例 例如:我的脚本需要添加一个Bone的列表,一个个拖动很麻烦。 实现脚本 我们可以用这样的脚本来实现。 public…

浅谈结构化数据、非结构化数据,关系数据库、非关系数据库

结构化数据和非结构化数据两者之间存在一定的区别。以下是具体分析: - **结构化数据**:通常指的是那些组织严谨、格式规范统一的数据,它们存储在关系数据库中,可以通过二维表的形式进行逻辑表达。这类数据有明确的数据模型&#…

微信小程序开发系列(十三)·如何使用iconfont、微信小程序中如何使用字体图标

目录 1. 如何使用iconfont 2. 微信小程序中如何使用字体图标 3. 背景图的使用 1. 如何使用iconfont 在项目中使用到的小图标,一般由公司设计师进行设计,设计好以后上传到阿里巴巴矢量图标库,然后方便程序员来进行使用。 小程序中的字体…

最简单 导航栏 html css

dhl.html <!DOCTYPE html> <html><head><meta charset"utf-8"><title>导航栏</title><link type"text/css" rel"stylesheet" href"css/dhl.css"></head><div class"dhl&quo…

2024.3.5 网络编程

思维导图 复习课堂作业&#xff1a;IO多路复用 select 实现服务端 #include<myhead.h> #define SER_IP "192.168.68.154" #define SER_PORT 1234int main(int argc, const char *argv[]) {//1、创建用于监听的套接字int sfd -1;sfdsocket(AF_INET, SOCK_STR…

【笔记】ArkTS 语言(OpenHarmony系统)

一、官方简介和文档 介绍&#xff1a;aArkTS 语言 | 华为开发者联盟 (huawei.com) 学习指南&#xff08;文档&#xff09;&#xff1a;初识ArkTS语言-学习ArkTS语言-入门 | 华为开发者联盟 (huawei.com) 二、ArkTS语言知识 &#xff08;一&#xff09;编程语言介绍 Mozilla创…

ASUS华硕天选2锐龙版笔记本电脑FA506ICB/FA706IC原装出厂Windows11系统,预装OEM系统恢复安装开箱状态

链接&#xff1a;https://pan.baidu.com/s/122iHHEOtNUu4azhVPnxNuA?pwdsqk7 提取码&#xff1a;sqk7 适用型号&#xff1a; FA506IM、FA506IE、FA506IC、FA506IHR FA506IR、FA506IHRB、FA506ICB、FA506IEB FA706IM、FA706IE、FA706IC、FA706IHR FA706IR、FA706IHRB、F…

DxO PureRAW:赋予RAW图像生命,打造非凡视觉体验 mac/win版

DxO PureRAW 是一款专为RAW图像处理而设计的软件&#xff0c;旨在帮助摄影师充分利用RAW格式的优势&#xff0c;实现更加纯净、细腻的图像效果。该软件凭借其强大的功能和易于使用的界面&#xff0c;成为了RAW图像处理领域的佼佼者。 DxO PureRAW 软件获取 首先&#xff0c;Dx…

python 操作 minio

座右铭&#xff1a;怎么简单怎么来&#xff0c;以实现功能为主。 欢迎大家关注公众号与我交流 环境安装 pip install -U minio 示例代码 import os from minio import Minio from loguru import logger from datetime import timedeltaclass Client:endpoint: ip:portaccess…

【笔记】Android 漫游定制SPN定制有关字段

一、SPN模块简介 【笔记】SPN和PLMN 运营商网络名称显示 Android U 配置 WiFiCalling 场景下PLMN/SPN 显示的代码逻辑介绍 【笔记】Android Telephony 漫游SPN显示定制&#xff08;Roaming Alpha Tag&#xff09; 二、相关配置字段 non_roaming_operator_string_array 是否…

Nginx使用—http基础知识

web访问流程 当我们在客户端通过浏览器输入网址的时候&#xff0c;这时候是访问不到服务器的&#xff0c; 先会去找到DNS解析服务器&#xff0c;DNS解析服务器返回IP地址&#xff0c; 客户端通过http协议向服务端发送请求&#xff0c;服务器响应请求并返回对应的资源给客户端&a…

【排序】详解冒泡排序

一、思想 冒泡排序的基本思想是利用两两比较相邻记录的方式&#xff0c;通过一系列的比较和交换操作&#xff0c;使得较大或较小的元素逐渐移动到数列的一端。在每一轮的排序过程中&#xff0c;都会从数列的起始位置开始&#xff0c;对相邻的元素进行比较&#xff0c;如果它们…

【论文笔记】Language Models are Unsupervised Multitask Learners

Language Models are Unsupervised Multitask Learners 回顾一下第一代 GPT-1 &#xff1a; 设计思路是 “海量无标记文本进行无监督预训练少量有标签文本有监督微调” 范式&#xff1b;模型架构是基于 Transformer 的叠加解码器&#xff08;掩码自注意力机制、残差、Layernorm…

linux系统---LNMP架构下部署社区论坛与博客

一.编译安装Nginx&#xff08;web服务器&#xff09; 1.关闭防火墙 systemctl stop firewalld systemctl disable firewalld setenforce 0 2、安装依赖包 yum -y install pcre-devel zlib-devel gcc gcc-c make 3、创建运行用户 nginx 服务程序默认 以 nobody 身份运行&a…

upload-Labs靶场“11-15”关通关教程

君衍. 一、第十一关 %00截断GET上传1、源码分析2、%00截断GET上传 二、第十二关 %00截断POST上传1、源码分析2、%00截断POST上传 三、第十三关 文件头检测绕过1、源码分析2、文件头检测绕过 四、第十四关 图片检测绕过上传1、源码分析2、图片马绕过上传 五、第十五关 图片检测绕…

CSS的标准文档流,web后端开发框架

了解校招 知己知彼才能百战百胜&#xff0c;在准备校招之前&#xff0c;我们先要了解校招。 什么是校招&#xff1f; 校招&#xff0c;全称校园招聘&#xff0c;指企业招聘那些即将毕业的学生。校招主要分为三个部分&#xff1a;简历筛选&#xff0c;笔试&#xff0c;面试。 …

MATLAB环境下基于LSTM模型的癫痫发作检测方法

癫痫预测研究是利用脑电信号对癫痫发病过程做出及时的预测以促进癫痫发病的防治&#xff0c;这一研究的重点在于充分利用癫痫发生前后人体大脑产生的脑电信号。但截至上世纪九十年代初期&#xff0c;医学工作者及相关领域的专家们仍然相信癫痫病的发生过程是一种突发的、毫无规…