中文文本分类_1(pytorch 实现)

news2024/10/6 0:32:44
import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warnings
 
warnings.filterwarnings("ignore")  # 忽略警告信息
 
# win10系统
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
train.csv 链接:https://pan.baidu.com/s/1Vnyvo5T5eSuzb0VwTsznqA?pwd=fqok 提取码:fqok 
import pandas as pd
 
# 加载自定义中文数据集
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
train_data.head()
 
# 构建数据集迭代器
def coustom_data_iter(texts, labels):
    for x, y in zip(texts, labels):
        yield x, y
 
train_iter = coustom_data_iter(train_data[0].values[:], train_data[1].values[:])

1.构建词典:

from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import jieba
 
# 中文分词方法
tokenizer = jieba.lcut
 
def yield_tokens(data_iter):
    for text, in data_iter:
        yield tokenizer(text)
 
vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])

 调用vocab(词汇表)对一个中文句子进行索引转换,这个句子被分词后得到的词汇列表会被转换成它们在词汇表中的索引。

print(vocab(['我', '想', '看', '书', '和', '你', '一起', '看', '电影', '的', '新款', '视频']))

生成一个标签列表,用于查看在数据集中所有可能的标签类型。 

label_name = list(set(train_data[1].values[:]))
print(label_name)

创建了两个lambda函数,一个用于将文本转换成词汇索引,另一个用于将标签文本转换成它们在label_name列表中的索引。

text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: label_name.index(x)
 
print(text_pipeline('我想看新闻或者上网站看最新的游戏视频'))
print(label_pipeline('Video-Play'))

2.生成数据批次和迭代器

from torch.utils.data import DataLoader
 
def collate_batch(batch):
    label_list, text_list, offsets = [], [], [0]
 
    for (_text, _label) in batch:
        # 标签列表
        label_list.append(label_pipeline(_label))
        
        # 文本列表
        processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
        text_list.append(processed_text)
        
        # 偏移量,即词汇的起始位置
        offsets.append(processed_text.size(0))
 
    label_list = torch.tensor(label_list, dtype=torch.int64)
    text_list = torch.cat(text_list)
    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)  # 累计偏移量dim中维度元素的累计和
    
    return text_list.to(device), label_list.to(device), offsets.to(device)
 
# 数据加载器,调用示例
dataloader = DataLoader(train_iter,
                        batch_size=8,
                        shuffle=False,
                        collate_fn=collate_batch)

collate_batch函数用于处理数据加载器中的批次。它接收一个批次的数据,处理它,并返回适合模型训练的数据格式。
在这个函数内部,它遍历批次中的每个文本和标签对,将标签添加到label_list,将文本通过text_pipeline函数处理后转换为tensor,并添加到text_list。
offsets列表用于存储每个文本的长度,这对于后续的文本处理非常有用,尤其是当你需要知道每个文本在拼接的大tensor中的起始位置时。
text_list用torch.cat进行拼接,形成一个连续的tensor。
offsets列表的最后一个元素不包括,然后使用cumsum函数在第0维计算累积和,这为每个序列提供了一个累计的偏移量。

3.搭建模型与初始化

from torch import nn
 
class TextClassificationModel(nn.Module):
    def __init__(self, vocab_size, embed_dim, num_class):
        super(TextClassificationModel, self).__init__()
        self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)
        self.fc = nn.Linear(embed_dim, num_class)
        self.init_weights()
    
    def init_weights(self):
        initrange = 0.5
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc.weight.data.uniform_(-initrange, initrange)
        self.fc.bias.data.zero_()
        
    def forward(self, text, offsets):
        embedded = self.embedding(text, offsets)
        return self.fc(embedded)
 
num_class = len(label_name)  # 类别数,根据label_name的长度确定
vocab_size = len(vocab)      # 词汇表的大小,根据vocab的长度确定
em_size = 64                 # 嵌入向量的维度设置为64
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)  # 创建模型实例并移动到计算设备
 

4.模型训练及评估函数

train 和 evaluate分别用于训练和评估文本分类模型。

训练函数 train 的工作流程如下:

将模型设置为训练模式。
初始化总准确率、训练损失和总计数变量。
记录训练开始的时间。
遍历数据加载器,对每个批次:
进行预测。
清零优化器的梯度。
计算损失(使用一个损失函数,例如交叉熵)。
反向传播计算梯度。
通过梯度裁剪防止梯度爆炸。
执行一步优化器更新模型权重。
更新总准确率和总损失。
每隔一定间隔,打印训练进度和统计信息。
评估函数 evaluate 的工作流程如下:

将模型设置为评估模式。
初始化总准确率和总损失。
不计算梯度(为了节省内存和计算资源)。
遍历数据加载器,对每个批次:
进行预测。
计算损失。
更新总准确率和总损失。
返回整体的准确率和平均损失。
代码实现:

import time
 
def train(dataloader):
    model.train()  # 切换到训练模式
    total_acc, train_loss, total_count = 0, 0, 0
    log_interval = 50
    start_time = time.time()
 
    for idx, (text, label, offsets) in enumerate(dataloader):
        predicted_label = model(text, offsets)
        optimizer.zero_grad()  # 梯度归零
        loss = criterion(predicted_label, label)  # 计算损失
        loss.backward()  # 反向传播
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)  # 梯度裁剪
        optimizer.step()  # 优化器更新权重
 
        # 记录acc和loss
        total_acc += (predicted_label.argmax(1) == label).sum().item()
        train_loss += loss.item()
        total_count += label.size(0)
        
        if idx % log_interval == 0 and idx > 0:
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches '
                  '| accuracy {:8.3f} | loss {:8.5f}'.format(
                      epoch, idx, len(dataloader),
                      total_acc/total_count, train_loss/total_count))
            total_acc, train_loss, total_count = 0, 0, 0
            start_time = time.time()
 
def evaluate(dataloader):
    model.eval()  # 切换到评估模式
    total_acc, total_count = 0, 0
 
    with torch.no_grad():
        for idx, (text, label, offsets) in enumerate(dataloader):
            predicted_label = model(text, offsets)
            loss = criterion(predicted_label, label)  # 计算loss
            total_acc += (predicted_label.argmax(1) == label).sum().item()
            total_count += label.size(0)
 
    return total_acc/total_count, total_count

5.模型训练
设置训练的轮数、学习率和批次大小。
定义交叉熵损失函数、随机梯度下降优化器和学习率调度器。
将训练数据转换为一个map样式的数据集,并将其分成训练集和验证集。
创建训练和验证的数据加载器。
开始训练循环,每个epoch都会训练模型并在验证集上评估模型的准确率和损失。
如果验证准确率没有提高,则按计划降低学习率。
打印每个epoch结束时的统计信息,包括时间、准确率、损失和学习率。

from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 参数设置
EPOCHS = 10  # epoch数量
LR = 5  # 学习速率
BATCH_SIZE = 64  # 训练的batch大小
 
# 设置损失函数、优化器和调度器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None
 
# 准备数据集
train_iter = coustom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)
 
split_train_, split_valid_ = random_split(train_dataset,
                                          [int(len(train_dataset)*0.8), int(len(train_dataset)*0.2)])
 
train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)
 
valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)
 
# 训练循环
for epoch in range(1, EPOCHS + 1):
    epoch_start_time = time.time()
    train(train_dataloader)
    val_acc, val_loss = evaluate(valid_dataloader)
 
    # 更新学习率的策略
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    if total_accu is not None and total_accu > val_acc:
        scheduler.step()
    else:
        total_accu = val_acc
    print('-' * 69)
    print('| end of epoch {:3d} | time: {:4.2f}s | '
          'valid accuracy {:4.3f} | valid loss {:4.3f} | lr {:4.6f}'.format(
              epoch, time.time() - epoch_start_time, val_acc, val_loss, lr))
 
print('-' * 69)

运行结果:

| epoch   1 |    50/  152 batches | accuracy    0.423 | loss  0.03079
| epoch   1 |   100/  152 batches | accuracy    0.700 | loss  0.01912
| epoch   1 |   150/  152 batches | accuracy    0.776 | loss  0.01347
---------------------------------------------------------------------
| end of epoch   1 | time: 1.53s | valid accuracy 0.777 | valid loss 2420.000 | lr 5.000000
| epoch   2 |    50/  152 batches | accuracy    0.812 | loss  0.01056
| epoch   2 |   100/  152 batches | accuracy    0.843 | loss  0.00871
| epoch   2 |   150/  152 batches | accuracy    0.844 | loss  0.00846
---------------------------------------------------------------------
| end of epoch   2 | time: 1.45s | valid accuracy 0.842 | valid loss 2420.000 | lr 5.000000
| epoch   3 |    50/  152 batches | accuracy    0.883 | loss  0.00653
| epoch   3 |   100/  152 batches | accuracy    0.879 | loss  0.00634
| epoch   3 |   150/  152 batches | accuracy    0.883 | loss  0.00627
---------------------------------------------------------------------
| end of epoch   3 | time: 1.44s | valid accuracy 0.865 | valid loss 2420.000 | lr 5.000000
| epoch   4 |    50/  152 batches | accuracy    0.912 | loss  0.00498
| epoch   4 |   100/  152 batches | accuracy    0.906 | loss  0.00495
| epoch   4 |   150/  152 batches | accuracy    0.915 | loss  0.00461
---------------------------------------------------------------------
| end of epoch   4 | time: 1.50s | valid accuracy 0.876 | valid loss 2420.000 | lr 5.000000
| epoch   5 |    50/  152 batches | accuracy    0.935 | loss  0.00386
| epoch   5 |   100/  152 batches | accuracy    0.934 | loss  0.00390
| epoch   5 |   150/  152 batches | accuracy    0.932 | loss  0.00362
---------------------------------------------------------------------
| end of epoch   5 | time: 1.59s | valid accuracy 0.881 | valid loss 2420.000 | lr 5.000000
| epoch   6 |    50/  152 batches | accuracy    0.947 | loss  0.00313
| epoch   6 |   100/  152 batches | accuracy    0.949 | loss  0.00307
| epoch   6 |   150/  152 batches | accuracy    0.949 | loss  0.00286
---------------------------------------------------------------------
| end of epoch   6 | time: 1.68s | valid accuracy 0.891 | valid loss 2420.000 | lr 5.000000
| epoch   7 |    50/  152 batches | accuracy    0.960 | loss  0.00243
| epoch   7 |   100/  152 batches | accuracy    0.963 | loss  0.00224
| epoch   7 |   150/  152 batches | accuracy    0.959 | loss  0.00252
---------------------------------------------------------------------
| end of epoch   7 | time: 1.53s | valid accuracy 0.892 | valid loss 2420.000 | lr 5.000000
| epoch   8 |    50/  152 batches | accuracy    0.972 | loss  0.00186
| epoch   8 |   100/  152 batches | accuracy    0.974 | loss  0.00184
| epoch   8 |   150/  152 batches | accuracy    0.967 | loss  0.00201
---------------------------------------------------------------------
| end of epoch   8 | time: 1.43s | valid accuracy 0.895 | valid loss 2420.000 | lr 5.000000
| epoch   9 |    50/  152 batches | accuracy    0.981 | loss  0.00138
| epoch   9 |   100/  152 batches | accuracy    0.977 | loss  0.00165
| epoch   9 |   150/  152 batches | accuracy    0.980 | loss  0.00147
---------------------------------------------------------------------
| end of epoch   9 | time: 1.48s | valid accuracy 0.900 | valid loss 2420.000 | lr 5.000000
| epoch  10 |    50/  152 batches | accuracy    0.987 | loss  0.00117
| epoch  10 |   100/  152 batches | accuracy    0.985 | loss  0.00121
| epoch  10 |   150/  152 batches | accuracy    0.984 | loss  0.00121
---------------------------------------------------------------------
| end of epoch  10 | time: 1.45s | valid accuracy 0.902 | valid loss 2420.000 | lr 5.000000
---------------------------------------------------------------------

6.模型评估

test_acc, test_loss = evaluate(valid_dataloader)
print('模型的准确率: {:5.4f}'.format(test_acc))

7.模型测试

def predict(text, text_pipeline):
    with torch.no_grad():
        text = torch.tensor(text_pipeline(text))
        output = model(text, torch.tensor([0]))
        return output.argmax(1).item()
 
# 示例文本字符串
# ex_text_str = "例句输入——这是一个待预测类别的示例句子"
ex_text_str = "这不仅影响到我们的方案是否可行13号的"
 
model = model.to("cpu")
 
print("该文本的类别是: %s" % label_name[predict(ex_text_str, text_pipeline)])

8.全部代码(部分修改):

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warnings
 
warnings.filterwarnings("ignore")  # 忽略警告信息
 
# win10系统
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
 
import pandas as pd
 
# 加载自定义中文数据集
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
train_data.head()
 
# 构建数据集迭代器
def custom_data_iter(texts, labels):
    for x, y in zip(texts, labels):
        yield x, y
 
train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])
 
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import jieba
 
# 中文分词方法
tokenizer = jieba.lcut
 
def yield_tokens(data_iter):
    for text,_ in data_iter:
        yield tokenizer(text)
 
vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])
 
print(vocab(['我', '想', '看', '书', '和', '你', '一起', '看', '电影', '的', '新款', '视频']))
 
label_name = list(set(train_data[1].values[:]))
print(label_name)
 
text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: label_name.index(x)
 
print(text_pipeline('我想看新闻或者上网站看最新的游戏视频'))
print(label_pipeline('Video-Play'))
 
from torch.utils.data import DataLoader
 
def collate_batch(batch):
    label_list, text_list, offsets = [], [], [0]
 
    for (_text, _label) in batch:
        # 标签列表
        label_list.append(label_pipeline(_label))
        
        # 文本列表
        processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
        text_list.append(processed_text)
        
        # 偏移量,即词汇的起始位置
        offsets.append(processed_text.size(0))
 
    label_list = torch.tensor(label_list, dtype=torch.int64)
    text_list = torch.cat(text_list)
    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)  # 累计偏移量dim中维度元素的累计和
    
    return text_list.to(device), label_list.to(device), offsets.to(device)
 
# 数据加载器,调用示例
dataloader = DataLoader(train_iter,
                        batch_size=8,
                        shuffle=False,
                        collate_fn=collate_batch)
 
from torch import nn
 
class TextClassificationModel(nn.Module):
    def __init__(self, vocab_size, embed_dim, num_class):
        super(TextClassificationModel, self).__init__()
        self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)
        self.fc = nn.Linear(embed_dim, num_class)
        self.init_weights()
    
    def init_weights(self):
        initrange = 0.5
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc.weight.data.uniform_(-initrange, initrange)
        self.fc.bias.data.zero_()
        
    def forward(self, text, offsets):
        embedded = self.embedding(text, offsets)
        return self.fc(embedded)
num_class = len(label_name)
vocab_size = len(vocab)
em_size = 64
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)
 
import time
 
def train(dataloader):
    model.train()  # 切换到训练模式
    total_acc, train_loss, total_count = 0, 0, 0
    log_interval = 50
    start_time = time.time()
 
    for idx, (text, label, offsets) in enumerate(dataloader):
        predicted_label = model(text, offsets)
        optimizer.zero_grad()  # 梯度归零
        loss = criterion(predicted_label, label)  # 计算损失
        loss.backward()  # 反向传播
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)  # 梯度裁剪
        optimizer.step()  # 优化器更新权重
 
        # 记录acc和loss
        total_acc += (predicted_label.argmax(1) == label).sum().item()
        train_loss += loss.item()
        total_count += label.size(0)
        
        if idx % log_interval == 0 and idx > 0:
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches '
                  '| accuracy {:8.3f} | loss {:8.5f}'.format(
                      epoch, idx, len(dataloader),
                      total_acc/total_count, train_loss/total_count))
            total_acc, train_loss, total_count = 0, 0, 0
            start_time = time.time()
 
def evaluate(dataloader):
    model.eval()  # 切换到评估模式
    total_acc, total_count = 0, 0
 
    with torch.no_grad():
        for idx, (text, label, offsets) in enumerate(dataloader):
            predicted_label = model(text, offsets)
            loss = criterion(predicted_label, label)  # 计算loss
            total_acc += (predicted_label.argmax(1) == label).sum().item()
            total_count += label.size(0)
 
    return total_acc/total_count, total_count
 
from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 参数设置
EPOCHS = 10  # epoch数量
LR = 5  # 学习速率
BATCH_SIZE = 64  # 训练的batch大小
 
# 设置损失函数、优化器和调度器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None
 
# 准备数据集
train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)
 
split_train_, split_valid_ = random_split(train_dataset,
                                          [int(len(train_dataset)*0.8), int(len(train_dataset)*0.2)])
 
train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)
 
valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)
 
# 训练循环
for epoch in range(1, EPOCHS + 1):
    epoch_start_time = time.time()
    train(train_dataloader)
    val_acc, val_loss = evaluate(valid_dataloader)
 
    # 更新学习率的策略
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    if total_accu is not None and total_accu > val_acc:
        scheduler.step()
    else:
        total_accu = val_acc
    print('-' * 69)
    print('| end of epoch {:3d} | time: {:4.2f}s | '
          'valid accuracy {:4.3f} | valid loss {:4.3f} | lr {:4.6f}'.format(
              epoch, time.time() - epoch_start_time, val_acc, val_loss, lr))
 
print('-' * 69)
 
test_acc, test_loss = evaluate(valid_dataloader)
print('模型的准确率: {:5.4f}'.format(test_acc))
 
def predict(text, text_pipeline):
    with torch.no_grad():
        text = torch.tensor(text_pipeline(text))
        output = model(text, torch.tensor([0]))
        return output.argmax(1).item()
 
# 示例文本字符串
# ex_text_str = "例句输入——这是一个待预测类别的示例句子"
ex_text_str = "这不仅影响到我们的方案是否可行13号的"
 
model = model.to("cpu")
 
print("该文本的类别是: %s" % label_name[predict(ex_text_str, text_pipeline)])

9.代码改进及优化

9.1优化器: 尝试不同的优化算法,如Adam、RMSprop替换原来的SGD优化器部分
9.1.1使用Adam优化器:
import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warnings
 
warnings.filterwarnings("ignore")  # 忽略警告信息
 
# win10系统
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
 
import pandas as pd
 
# 加载自定义中文数据集
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
train_data.head()
 
# 构建数据集迭代器
def custom_data_iter(texts, labels):
    for x, y in zip(texts, labels):
        yield x, y
 
train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])
 
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import jieba
 
# 中文分词方法
tokenizer = jieba.lcut
 
def yield_tokens(data_iter):
    for text,_ in data_iter:
        yield tokenizer(text)
 
vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])
 
print(vocab(['我', '想', '看', '书', '和', '你', '一起', '看', '电影', '的', '新款', '视频']))
 
label_name = list(set(train_data[1].values[:]))
print(label_name)
 
text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: label_name.index(x)
 
print(text_pipeline('我想看新闻或者上网站看最新的游戏视频'))
print(label_pipeline('Video-Play'))
 
from torch.utils.data import DataLoader
 
def collate_batch(batch):
    label_list, text_list, offsets = [], [], [0]
 
    for (_text, _label) in batch:
        # 标签列表
        label_list.append(label_pipeline(_label))
        
        # 文本列表
        processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
        text_list.append(processed_text)
        
        # 偏移量,即词汇的起始位置
        offsets.append(processed_text.size(0))
 
    label_list = torch.tensor(label_list, dtype=torch.int64)
    text_list = torch.cat(text_list)
    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)  # 累计偏移量dim中维度元素的累计和
    
    return text_list.to(device), label_list.to(device), offsets.to(device)
 
# 数据加载器,调用示例
dataloader = DataLoader(train_iter,
                        batch_size=8,
                        shuffle=False,
                        collate_fn=collate_batch)
 
from torch import nn
 
class TextClassificationModel(nn.Module):
    def __init__(self, vocab_size, embed_dim, num_class):
        super(TextClassificationModel, self).__init__()
        self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)
        self.fc = nn.Linear(embed_dim, num_class)
        self.init_weights()
    
    def init_weights(self):
        initrange = 0.5
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc.weight.data.uniform_(-initrange, initrange)
        self.fc.bias.data.zero_()
        
    def forward(self, text, offsets):
        embedded = self.embedding(text, offsets)
        return self.fc(embedded)
num_class = len(label_name)
vocab_size = len(vocab)
em_size = 64
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)
 
import time
 
def train(dataloader):
    model.train()  # 切换到训练模式
    total_acc, train_loss, total_count = 0, 0, 0
    log_interval = 50
    start_time = time.time()
 
    for idx, (text, label, offsets) in enumerate(dataloader):
        predicted_label = model(text, offsets)
        optimizer.zero_grad()  # 梯度归零
        loss = criterion(predicted_label, label)  # 计算损失
        loss.backward()  # 反向传播
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)  # 梯度裁剪
        optimizer.step()  # 优化器更新权重
 
        # 记录acc和loss
        total_acc += (predicted_label.argmax(1) == label).sum().item()
        train_loss += loss.item()
        total_count += label.size(0)
        
        if idx % log_interval == 0 and idx > 0:
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches '
                  '| accuracy {:8.3f} | loss {:8.5f}'.format(
                      epoch, idx, len(dataloader),
                      total_acc/total_count, train_loss/total_count))
            total_acc, train_loss, total_count = 0, 0, 0
            start_time = time.time()
 
def evaluate(dataloader):
    model.eval()  # 切换到评估模式
    total_acc, total_count = 0, 0
 
    with torch.no_grad():
        for idx, (text, label, offsets) in enumerate(dataloader):
            predicted_label = model(text, offsets)
            loss = criterion(predicted_label, label)  # 计算loss
            total_acc += (predicted_label.argmax(1) == label).sum().item()
            total_count += label.size(0)
 
    return total_acc/total_count, total_count
 
from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 参数设置
EPOCHS = 10  # epoch数量
LR = 5  # 学习速率
BATCH_SIZE = 64  # 训练的batch大小
 
# 设置损失函数、优化器和调度器
criterion = torch.nn.CrossEntropyLoss()
#optimizer = torch.optim.SGD(model.parameters(), lr=LR)
optimizer = torch.optim.Adam(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None
 
# 准备数据集
train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)
 
split_train_, split_valid_ = random_split(train_dataset,
                                          [int(len(train_dataset)*0.8), int(len(train_dataset)*0.2)])
 
train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)
 
valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)
 
# 训练循环
for epoch in range(1, EPOCHS + 1):
    epoch_start_time = time.time()
    train(train_dataloader)
    val_acc, val_loss = evaluate(valid_dataloader)
 
    # 更新学习率的策略
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    if total_accu is not None and total_accu > val_acc:
        scheduler.step()
    else:
        total_accu = val_acc
    print('-' * 69)
    print('| end of epoch {:3d} | time: {:4.2f}s | '
          'valid accuracy {:4.3f} | valid loss {:4.3f} | lr {:4.6f}'.format(
              epoch, time.time() - epoch_start_time, val_acc, val_loss, lr))
 
print('-' * 69)
 
test_acc, test_loss = evaluate(valid_dataloader)
print('模型的准确率: {:5.4f}'.format(test_acc))
 
def predict(text, text_pipeline):
    with torch.no_grad():
        text = torch.tensor(text_pipeline(text))
        output = model(text, torch.tensor([0]))
        return output.argmax(1).item()
 
# 示例文本字符串
# ex_text_str = "例句输入——这是一个待预测类别的示例句子"
ex_text_str = "这不仅影响到我们的方案是否可行13号的"
 
model = model.to("cpu")
 
print("该文本的类别是: %s" % label_name[predict(ex_text_str, text_pipeline)])

需要下载的库

pip install jieba -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install torchtext -i https://pypi.tuna.tsinghua.edu.cn/simple


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1490766.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【你刚好需要,我们刚好可以做到】戳!戳!戳!

你刚好需要&#xff0c;我们刚好可以做到&#xff01;&#xff01;&#xff01; 今天给大家介绍一个朋友的网络科技公司&#xff1a;天津集创科技有限公司。 这不仅仅是一家公司&#xff0c;更是一场变革的引领者。通过创新和前瞻性技术&#xff0c;创作打破传统&#xff0c;共…

医学与美学的聚能,雍禾医疗打造“好医生·一人一案”个性化服务

在当下社会&#xff0c;脱发问题已成为困扰许多人的头等大事。尤其是在年轻人群中&#xff0c;随着社会竞争的加剧和生活压力的增加&#xff0c;越来越多的年轻人意识到毛发对于个人形象的重要性。无论是在求职面试、社交场合还是日常生活中&#xff0c;浓密健康的头发都成为了…

分享一本好书《大模型应用开发极简入门:基于GPT-4和ChatGPT》

如果问个问题&#xff1a;有哪些产品曾经创造了伟大的奇迹&#xff1f;ChatGPT 应该会当之无愧入选。仅仅发布 5 天&#xff0c;ChatGPT 就吸引了 100 万用户——当然&#xff0c;数据不是关键&#xff0c;关键是其背后的技术开启了新的 AI 狂潮&#xff0c;成为技术变革的点火…

【脑切片图像分割】MATLAB 图像处理 源码

1. 简单图像处理 加载图像 Brain.jpg&#xff0c;使用直方图和颜色分割成区域这些区域有不同的颜色。 这是一个更高级的问题&#xff0c;有多个解决它的方法。 例如&#xff0c;您可以计算具有特定数字的图像的直方图&#xff08;例如 16 - 32&#xff09;&#xff0c;找到直方…

Python爬虫实战:京东商品信息爬取

项目背景 需要获取京东的某一领域的商品信息数据&#xff0c;为后续项目推进做准备 实现思路 京东商品API数据采集接口可以实现大批量稳定数据采集。去获取每一个商品的数据首先需要去利用京东的搜索&#xff0c;利用关键字得到相关商品信息&#xff0c;由搜索结果去进行信息…

数据库和缓存如何保持一致性

目录 前言 更新数据库更新缓存&#xff1a; 1.在更新缓存前先加一个分布式锁 2.在更新完缓存时&#xff0c;给缓存加上较短的过期时间 Cache Aside策略 1.先删除缓存&#xff0c;再更新数据库 延迟双删 2.先更新数据库&#xff0c;再删除缓存 保证两个操作都能执行成功…

软考58-上午题-【数据库】-分布式数据库

一、四个透明 二、四种性质 三、真题 真题1&#xff1a; 真题2&#xff1a; 真题3&#xff1a; 真题4&#xff1a; 真题5&#xff1a;

信钰证券|沪指震荡涨0.26%,传媒等板块拉升,消费电子概念活跃

5日早盘&#xff0c;沪指盘中窄幅震荡上扬&#xff0c;创业板指、科创50指数走高&#xff0c;北证50指数跌超2%&#xff1b;北向资金小幅流入。 截至午间收盘&#xff0c;沪指涨0.26%报3047.2点&#xff0c;深成指微涨0.05%&#xff0c;创业板指涨0.42%&#xff0c;科创50指数…

mysql高可用架构设计

一、主从架构 主从架构一般如下所示 这里从节点一般设置成只读&#xff08;readonly&#xff09;模式。这样做&#xff0c;有以下几个考虑&#xff1a; 有时候一些运营类的查询语句会被放到备库上去查&#xff0c;设置为只读可以防止误操作&#xff1b; 防止切换逻辑有 bug&a…

uniapp制作--简单的tab切换

一、实现思路 在UniApp中&#xff0c;可以使用v-if来控制Tab栏并进行切换。 创建一个方法来控制点击时的效果。 二、实现步骤 ①view部分展示 <!-- tab选项 --><view class"select-area"><view class"select-top"><view clas…

软件测试行业最真实的写照,我后悔了。。。

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 软件测试是一个付出就有回报的工作&#xff0c;可能很多人会说软件测试就是吃青春饭&#xff0c;…

vs创建asp.net core webapi发布到ISS服务器

打开服务器创建test123文件夹&#xff0c;并设置共享。 ISS配置信息&#xff1a; 邮件网站&#xff0c;添加网站 webapi asp.net core发布到ISS服务器网页无法打开解决方法 点击ISS Express测试&#xff0c;可以成功打开网页。 点击生成&#xff0c;发布到服务器 找到服务器IP…

如何处理微服务之间的通信和数据一致性?

✨✨祝屏幕前的兄弟姐妹们每天都有好运相伴左右&#xff0c;一定要天天开心哦&#xff01;✨✨ &#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; 目录 引言 一、微服务通信 1、同步通信&#xff1a;HTTP 1.1.同步通信示例代码&#xf…

Q-Align Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels

Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels TL; DR&#xff1a;教会多模态大模型用文本等级评价词&#xff08;如 Good、Bad、Excellent 等&#xff09;来评估视觉质量分。 图像美学质量评估是一个小方向&#xff0c;但是实际业务中很有用&…

Jenkins 将shell脚本启动方式修改为bash

platform"arm x86" if [[ "$platform" ~ "arm" ]] thenecho "arm" fi最近在调试Jenkins实现的一些功能&#xff0c;发现在本地可以运行的脚本内容到了Jenkins里面就没办法运行了&#xff0c;不是提示unexpected operator就是提示[[ : …

鸿蒙Harmony应用开发—ArkTS声明式开发(通用属性:拖拽控制)

设置组件是否可以响应拖拽事件。 说明&#xff1a; 从API Version 10开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 ArkUI框架对以下组件实现了默认的拖拽能力&#xff0c;支持对数据的拖出或拖入响应&#xff0c;开发者只需要将这些组件…

商家转账到零钱申请时间要多久

商家转账到零钱是什么&#xff1f; 【商家转账到零钱】功能整合了微信支付之前的【企业付款到零钱】【批量转账到零钱】功能&#xff0c;支持批量对外转账&#xff0c;对有批量对用户付款需求的应用场景更友好&#xff0c;操作便捷。如果你的应用场景是单付款场景的话&#xf…

运维打工人,周末兼职送外卖的一天

运维打工人&#xff0c;周末兼职送外卖的一天 在那个不经意的周末&#xff0c;我决定尝试一份新的工作——为美团外卖做兼职配送员。这份工作对于一向规律生活的我来说&#xff0c;既是突破也是挑战。 早晨&#xff0c;空气中带着几分凉意和宁静。准备好出发时&#xff0c;线…

如何做代币分析:以 CRO 币为例

作者&#xff1a;lesleyfootprint.network 编译&#xff1a;Mingfootprint.network 数据源&#xff1a;CRO Token Dashboard &#xff08;仅包括以太坊数据&#xff09; 在加密货币和数字资产领域&#xff0c;代币分析起着至关重要的作用。代币分析指的是深入研究与代币相关…

Unity编辑器功能Inspector快捷自动填充数据

我们有时候可能需要在面板增加一些引用&#xff0c;可能添加脚本后要手动拖动&#xff0c;这样如果有大量的脚本拖动也是不小的工作量 实例 例如&#xff1a;我的脚本需要添加一个Bone的列表&#xff0c;一个个拖动很麻烦。 实现脚本 我们可以用这样的脚本来实现。 public…