STM32-BKP备份寄存器和RTC时钟

news2024/9/23 21:27:10

BKP介绍

BKP(Bckup Registers)备份寄存器

备份寄存器是42个16位的寄存器,可用来存储84个字节的用户应用程序数据。他们处在备份域里,当VDD电源被切断,他们仍然由VBAT(备用电池电源)维持供电。当系统在待机模式下被唤醒,或系统复位或电源复位时,他们也不会被复位。

复位后,对备份寄存器和RTC的访问被禁止,并且备份域被保护以防止可能存在的意外的写操作。执行以下操作可以使能对备份寄存器和RTC的访问。

BKP功能

  • 数据后备寄存器
  • 用来管理防入侵检测并具有中断功能的状态/控制寄存器
  • 用来存储RTC校验值的校验寄存器,用来管理侵入检测和RTC校准功能。
  • 在指定引脚(当该引脚不用于侵入检测时)上输出RTC校准时钟, RTC闹钟脉冲或者秒脉冲。

BKP功能介绍

BKP结构框图

侵入检测

当TAMPER引脚上的信号从’0’变成’1’或者从’1’变成’0’(取决于备份控制寄存器BKP_CR的TPA位),会产生一个侵入检测事件。侵入检测事件将所有数据备份寄存器内容清除。

然而为了避免丢失侵入事件,侵入检测信号是边沿检测的信号与侵入检测允许位的逻辑与,从而在侵入检测引脚被允许前发生的侵入事件也可以被检测到。

当VDD电源断开时,侵入检测功能仍然有效。为了避免不必要的复位数据备份寄存器, TAMPER引脚应该在片外连接到正确的电平。

RTC时钟

RTC简介

RTC(Real Time Clock)实时时钟

实时时钟是一个独立的定时器。 RTC模块拥有一组连续计数的计数器,在相应软件配置下,可提供时钟日历的功能。修改计数器的值可以重新设置系统当前的时间和日期。

RTC模块和时钟配置系统(RCC_BDCR寄存器)处于后备区域,即在系统复位或从待机模式唤醒后, RTC的设置和时间维持不变,VDD(2.0~3.6V)断电后可借助VBAT(1.8~3.6V)供电继续走时。

主要特征

  • 可编程的预分频系数:分频系数最高为220
  • 32位的可编程计数器,可用于较长时间段的测量
  • 2个分离的时钟:用于APB1接口的PCLK1和RTC时钟(RTC时钟的频率必须小于PCLK1时钟频率的四分之一以上)。
  • 可以选择以下三种RTC的时钟源:
    • HSE时钟除以128(通常为8MHz\128)
    • LSE振荡器时钟(通常为32.768KHz),内部RTC专用时钟,2的次方数,经过15位计数器自然溢出,便是1Hz,只有这一路可以通过备用电池进行供电。
    • LSI振荡器时钟(通常为40KHz)
  • 2个独立的复位类型:
    • APB1接口由系统复位
    • RTC核心(预分频器、闹钟、计数器和分频器)只能由后备域复位
  • 3个专门的可屏蔽中断:
    • 闹钟中断,用来产生一个软件可编程的闹钟中断。
    • 秒中断,用来产生一个可编程的周期性中断信号(最长可达1秒)。
    • 溢出中断,指示内部可编程计数器溢出并回转为0的状态。

RTC框图

 RTC硬件电路

 RTC操作注意事项

执行以下操作将使能对BKPRTC的访问:

        设置RCC_APB1ENRPWRENBKPEN使能PWRBKP时钟

        设置PWR_CRDBP,使能对BKPRTC的访问

若在读取RTC寄存器时,RTCAPB1接口曾经处于禁止状态,则软件首先必须等待RTC_CRL寄存器中的RSF位(寄存器同步标志)被硬件置1(RTC等待同步,APB1时钟速度远大于RTC时钟速度,所以需要先等一下RTC寄存器将数据更新到APB1总线再进行读取,不然读到的数据会是错的)

必须设置RTC_CRL寄存器中的CNF位,使RTC进入配置模式后,才能写入RTC_PRLRTC_CNTRTC_ALR寄存器

对RTC任何寄存器的写操作,都必须在前一次写操作结束后进行。可以通过查询RTC_CR寄存器中的RTOFF状态位,判断RTC寄存器是否处于更新中。仅当RTOFF状态位是1时,才可以写入RTC寄存器。根本原因还是频率不一致,快的要等一下慢的写完。

RTC初始化代码

uint16_t MyRTC_Time[] = {2023, 1, 1, 23, 59, 55};	//定义全局的时间数组,数组内容分别为年、月、日、时、分、秒

void MyRTC_Init(void)
{
	/*开启时钟*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);		//开启PWR的时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);		//开启BKP的时钟
	
	/*备份寄存器访问使能*/
	PWR_BackupAccessCmd(ENABLE);							//使用PWR开启对备份寄存器的访问
	
	if (BKP_ReadBackupRegister(BKP_DR1) != 0xA5A5)			//通过写入备份寄存器的标志位,判断RTC是否是第一次配置
															//if成立则执行第一次的RTC配置
	{
		RCC_LSEConfig(RCC_LSE_ON);							//开启LSE时钟
		while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) != SET);	//等待LSE准备就绪
		
		RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);				//选择RTCCLK来源为LSE
		RCC_RTCCLKCmd(ENABLE);								//RTCCLK使能
		
		RTC_WaitForSynchro();								//等待同步
		RTC_WaitForLastTask();								//等待上一次操作完成
		
		RTC_SetPrescaler(32768 - 1);						//设置RTC预分频器,预分频后的计数频率为1Hz
		RTC_WaitForLastTask();								//等待上一次操作完成
		
		MyRTC_SetTime();									//设置时间,调用此函数,全局数组里时间值刷新到RTC硬件电路
		
		BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);			//在备份寄存器写入自己规定的标志位,用于判断RTC是不是第一次执行配置
	}
	else													//RTC不是第一次配置
	{
		RTC_WaitForSynchro();								//等待同步
		RTC_WaitForLastTask();								//等待上一次操作完成
	}
}

//RTC设置时间
void MyRTC_SetTime(void)
{
	time_t time_cnt;		//定义秒计数器数据类型
	struct tm time_date;	//定义日期时间数据类型
	
	time_date.tm_year = MyRTC_Time[0] - 1900;		//将数组的时间赋值给日期时间结构体
	time_date.tm_mon = MyRTC_Time[1] - 1;
	time_date.tm_mday = MyRTC_Time[2];
	time_date.tm_hour = MyRTC_Time[3];
	time_date.tm_min = MyRTC_Time[4];
	time_date.tm_sec = MyRTC_Time[5];
	
	time_cnt = mktime(&time_date) - 8 * 60 * 60;	//调用mktime函数,将日期时间转换为秒计数器格式
													//- 8 * 60 * 60为东八区的时区调整
	
	RTC_SetCounter(time_cnt);						//将秒计数器写入到RTC的CNT中
	RTC_WaitForLastTask();							//等待上一次操作完成
}

//RTC读取时间
void MyRTC_ReadTime(void)
{
	time_t time_cnt;		//定义秒计数器数据类型
	struct tm time_date;	//定义日期时间数据类型
	
	time_cnt = RTC_GetCounter() + 8 * 60 * 60;		//读取RTC的CNT,获取当前的秒计数器
													//+ 8 * 60 * 60为东八区的时区调整
	
	time_date = *localtime(&time_cnt);				//使用localtime函数,将秒计数器转换为日期时间格式
	
	MyRTC_Time[0] = time_date.tm_year + 1900;		//将日期时间结构体赋值给数组的时间
	MyRTC_Time[1] = time_date.tm_mon + 1;
	MyRTC_Time[2] = time_date.tm_mday;
	MyRTC_Time[3] = time_date.tm_hour;
	MyRTC_Time[4] = time_date.tm_min;
	MyRTC_Time[5] = time_date.tm_sec;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1487276.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

011集——vba获取CAD图中图元类名objectname

在CAD中,通过快捷键PL(即POLYLINE命令)绘制的线属于AcDbPolyline。AcDbPolyline也被称为LWPOLYLINE,即简单Polyline,它所包含的对象在本身内部。 此外,CAD中还有另一种二维多段线对象,称为AcDb2…

Vue开发实例(十一)用户列表的实现与操作

用户列表的实现与操作 一、创建用户页面和路由二、表格优化1、表头自定义2、表格滚动3、加入数据索引4、利用插槽自定义显示 三、功能1、查询功能3、增加4、删除5、修改 一、创建用户页面和路由 创建用户页面 在 src/components/Main 下创建文件夹user,创建文件Us…

苍穹外卖Day05——总结5

前期文章 文章标题地址苍穹外卖Day01——总结1https://lushimeng.blog.csdn.net/article/details/135466359苍穹外卖Day01——解决总结1中存在的问题https://lushimeng.blog.csdn.net/article/details/135473412苍穹外卖Day02——总结2https://lushimeng.blog.csdn.net/articl…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《基于条件风险价值的虚拟电厂参与能量及备用市场的双层随机优化》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 这篇文章的标题涉及到以下几个关键点…

【二叉树的最近公共祖先】【后序遍历】Leetcode 236. 二叉树的最近公共祖先

【二叉树的最近公共祖先】【后序遍历】Leetcode 236. 二叉树的最近公共祖先 解法1 涉及到结果向上返回就要用后序遍历解法2 自己写的方法 后序遍历 ---------------🎈🎈236. 二叉树的最近公共祖先 题目链接🎈🎈-----------------…

【kubernetes】关于k8s集群如何将pod调度到指定node节点?

目录 一、k8s的watch机制 二、scheduler的调度策略 Predicate(预选策略) 常见算法: priorities(优选策略)常见的算法有: 三、k8s的标签管理之增删改查 四、k8s的将pod调度到指定node的方法 方案一&am…

20个 K8S集群常见问题总结,建议收藏

问题1:K8S集群服务访问失败? 原因分析:证书不能被识别,其原因为:自定义证书,过期等。 解决方法:更新证书即可。 问题2:K8S集群服务访问失败? curl: (7) Failed connec…

YOLOv9改进 | 基础篇 | 提供YOLOv9全系列支持V9n、V9s、V9m、V9l、V9x的修改方式(全网独家首发)

一、本文介绍 大家好,本文给大家带来的是2024年2月21日全新发布的SOTA模型YOLOv9的补全教程(算是一种补全吧我个人认为),了解V7的读者都知道V7系列是不支持模型深度和宽度的修改的也就是没有办法像YOLOv8那样有多个版本&#xff…

IOC中Bean的生命周期

生命周期的各个阶段: 可以分为三个阶段:产生-使用-销毁 又可以分四个阶段:四个阶段 实例化 ->属性注入->初始化 ->销毁 实例化后到使用的初始化过程: 属性赋值 ->处理各种Aware接口->实现BeanPostProcessor的b…

【大厂AI课学习笔记NO.63】模型的维护

说是模型的维护,其实这堂课都是在讲“在工业环境中开发和部署机器学习模型的流程”。 上图来自于我的笔记思维脑图,已经上传,要链接的访问的主页查看资源。 一路走来,我们学习了数据管理、模型学习、模型验证、模型部署等重要的步…

js中Generator函数详解

定义: promise是为了解决回调地狱的难题出现的,那么 Generator 就是为了解决异步问题而出现的。 普通函数,如果调用它会立即执行完毕;Generator 函数,它可以暂停,不一定马上把函数体中的所有代码执行完毕…

鸿蒙App开发新思路:小程序转App

国家与国家之间错综复杂,在谷歌的安卓操作系统“断供”后,鸿蒙系统的市场化&独立化的道路便显而易见了。 2024年1月18日,华为宣布,不再兼容安卓的“纯血鸿蒙”--HarmonyOS NEXT鸿蒙星河版最终面世,并与2024年Q4正…

自己本地模拟内存数据库增删改查

目录 学习初衷准备代码实现结果感谢阅读 学习初衷 用于满足自己的测试要求,不连接数据库,也不在意数据丢失 准备 maven依赖 org.springframework.boot spring-boot-starter-test test 代码实现 内存数据库(InMemoryDatabase&#xff0…

AmzTrends x TiDB Serverless:通过云原生改造实现全局成本降低 80%

本文介绍了厦门笛卡尔数据(AmzTrends)在面临数据存储挑战时,选择将其数据分析服务迁移到 TiDB Serverless 的思路和实践。通过全托管的数据库服务,AmzTrends 实现了全局成本降低 80% 的效果,同时也充分展示了 TiDB Ser…

【活动】金三银四,前端工程师如何把握求职黄金期

随着春意盎然的气息弥漫大地,程序员群体中也迎来了一年一度的“金三银四”求职热潮。这个时间段对于广大前端工程师而言,不仅象征着生机勃发的新起点,更是他们职业生涯中至关重要的转折点。众多知名公司在这一时期大规模开启招聘通道&#xf…

Java面试题总结200道(二)

26、简述Spring中Bean的生命周期? 在原生的java环境中,一个新的对象的产生是我们用new()的方式产生出来的。在Spring的IOC容器中,将这一部分的工作帮我们完成了(Bean对象的管理)。既然是对象,就存在生命周期,也就是作用…

机器人持续学习基准LIBERO系列9——数据集轨迹查看

0.前置 机器人持续学习基准LIBERO系列1——基本介绍与安装测试机器人持续学习基准LIBERO系列2——路径与基准基本信息机器人持续学习基准LIBERO系列3——相机画面可视化及单步移动更新机器人持续学习基准LIBERO系列4——robosuite最基本demo机器人持续学习基准LIBERO系列5——…

windows下安装npm

windows下安装了多个node.js如何切换npm。 下载nvm 下载nvm地址:https://github.com/coreybutler/nvm-windows/releases 安装nvm 这个是nodejs的安装位置,如果没有nodejs文件夹就新建一个(后来发现他会自动生成一个快捷方式) 设置setting.txt 打开安装…

http 协议深入介绍

一,http 相关概念 (一)关键名词 1,互联网 是网络的网络,是所有类型网络的母集 2,因特网 世界上最大的互联网网络。即因特网概念从属于互联网概念。习惯上,大家把连接在因特网上的计算机都成…

【大厂AI课学习笔记NO.66】TensorFlow

TensorFlow 这个框架,实在是太有名了,最近周红衣都在大力的宣传和讲解。 他说的是对的,人工智能,就是大力出奇迹,就是大量的算力,大量的数据,加上模型的加持,实现的智能感觉。 Goog…