机器学习:集成学习(Python)

news2025/1/11 6:54:05

一、Adaboost算法

1.1 Adaboost分类算法

adaboost_discrete_c.py

import numpy as np
import copy
from ch4.decision_tree_C import DecisionTreeClassifier


class AdaBoostClassifier:
    """
    adaboost分类算法:既可以做二分类、也可以做多分类,取决于基本分类器
    1. 同质学习器:非列表形式,按同种类型的基学习器构造
    2. 异质学习器:列表传递[logisticsregression, svm, cart, ...]
    """
    def __init__(self, base_estimator=None, n_estimators=10, learning_rate=1.0):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        :param learning_rate: 学习率,降低后续训练的基分类器的权重,避免过拟合
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.learning_rate = learning_rate
        # 如果不提供基学习器,则默认按照深度为2的决策树作为基分类器
        if self.base_estimator is None:
            self.base_estimator = DecisionTreeClassifier(max_depth=2)
        if type(base_estimator) != list:
            # 同质(同种类型)的分类器,深拷贝
            self.base_estimator = [copy.deepcopy(self.base_estimator)
                                   for _ in range(self.n_estimators)]
        else:
            # 异质(不同种类型)的分类器
            self.n_estimators = len(self.base_estimator)
        self.estimator_weights = []  # 每个基学习器的权重系数

    def fit(self, x_train, y_train):
        """
        训练AdaBoost每个基学习器,计算权重分布,每个基学习器的误差率和权重系数α,
        :param x_train: 训练集,二维数组:m * k
        :param y_train: 目标集
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        n_samples, n_class = x_train.shape[0], len(set(y_train))  # 样本量,类别数
        sample_weight = np.ones(n_samples)  # 为适应自写的基学习器,设置样本均匀权重为1.0
        # 针对每一个基学习器,根据带有权重分布的训练集训练基学习器,计算相关参数
        for idx in range(self.n_estimators):
            # 1. 使用具有权重分布的Dm的训练数据集学习,并预测
            self.base_estimator[idx].fit(x_train, y_train, sample_weight=sample_weight)
            # 只关心分类错误的,如果分类错误,则为0,正确则为1
            y_hat_0 = (self.base_estimator[idx].predict(x_train) == y_train).astype(int)
            # 2. 计算分类误差率
            error_rate = sample_weight.dot(1.0 - y_hat_0) / n_samples
            if error_rate > 0.5:
                self.estimator_weights.append(0)  # 当前基分类器不起作用
                continue
            # 3. 计算基分类器的权重系数,考虑溢出
            alpha_rate = 0.5 * np.log((1 - error_rate) / error_rate + 1e-8) + np.log(n_class - 1)
            alpha_rate = min(10.0, alpha_rate)  # 避免权重系数过大
            self.estimator_weights.append(alpha_rate)
            # 4. 更新样本权重,为了适应多分类,yi*Gm(xi)计算np.power(-1.0, 1 - y_hat_0)
            sample_weight *= np.exp(-1.0 * alpha_rate * np.power(-1.0, 1 - y_hat_0))
            sample_weight = sample_weight / np.sum(sample_weight) * n_samples
        # 5. 更新estimator的权重系数,按照学习率
        for i in range(self.n_estimators):
            self.estimator_weights[i] *= np.power(self.learning_rate, i)

    def predict_proba(self, x_test):
        """
        预测测试样本所属类别概率,软投票
        :param x_test: 测试样本集
        :return:
        """
        x_test = np.asarray(x_test)
        # 按照加法模型,线性组合基学习器
        # 每个测试样本,每个基学习器预测概率(10,[(0.68, 0.32),(0.55, 0.45)]...)
        y_hat_prob = np.sum([self.base_estimator[i].predict_proba(x_test) *
                             self.estimator_weights[i] for i in range(self.n_estimators)], axis=0)
        return y_hat_prob / y_hat_prob.sum(axis=1, keepdims=True)

    def predict(self, x_test):
        """
        预测测试样本所属类别
        :param x_test: 测试样本集
        :return:
        """
        return np.argmax(self.predict_proba(x_test), axis=1)

1.2 Adaboost回归算法

adaboost_regressor.py

import numpy as np
import copy
from ch4.decision_tree_R import DecisionTreeRegression  # CART


class AdaBoostRegressior:
    """
    adaboost回归算法:结合(集成)策略:加权中位数、预测值的平均加权
    1. 同质学习器,异质学习器
    2. 回归误差率依赖于相对误差:平方误差、线性误差、指数误差
    """
    def __init__(self, base_estimator=None, n_estimators=10, learning_rate=1.0,
                 loss="square", comb_strategy="weight_median"):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        :param learning_rate: 学习率,降低后续训练的基分类器的权重,避免过拟合
        :param loss: 损失函数:linear、square、exp
        :param comb_strategy: weight_median、weight_mean
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.learning_rate = learning_rate
        self.loss = loss  # 相对误差的损失函数
        self.comb_strategy = comb_strategy  # 结合策略
        # 如果不提供基学习器,则默认按照深度为2的决策树作为基分类器
        if self.base_estimator is None:
            self.base_estimator = DecisionTreeRegression(max_depth=2)
        if type(base_estimator) != list:
            # 同质(同种类型)的分类器,深拷贝
            self.base_estimator = [copy.deepcopy(self.base_estimator)
                                   for _ in range(self.n_estimators)]
        else:
            # 异质(不同种类型)的分类器
            self.n_estimators = len(self.base_estimator)
        self.estimator_weights = []  # 每个基学习器的权重系数

    def _cal_loss(self, y_true, y_hat):
        """
        根据损失函数计算相对误差
        :param y_true: 真值
        :param y_hat: 预测值
        :return:
        """
        errors = np.abs(y_true - y_hat)  # 绝对值误差
        if self.loss.lower() == "linear":  # 线性
            return errors / np.max(errors)
        elif self.loss.lower() == "square":  # 平方
            errors_s = (y_true - y_hat) ** 2
            return errors_s / np.max(errors) ** 2
        elif self.loss.lower() == "exp":  # 指数
            return 1 - np.exp(-errors / np.max(errors))
        else:
            raise ValueError("仅支持linear、square和exp...")

    def fit(self, x_train, y_train):
        """
        Adaboost回归算法,T个基学习器的训练:
        1. 基学习器基于权重分布Dt的训练集训练
        2. 计算最大绝对误差、相对误差、回归误差率
        3. 计算当前ht的置信度
        4. 更新下一轮的权重分布
        :param x_train:
        :param y_train:
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        n_samples, n_class = x_train.shape[0], len(set(y_train))  # 样本量,类别数
        sample_weight = np.ones(n_samples)  # 为适应自写的基学习器,设置样本均匀权重为1.0
        for idx in range(self.n_estimators):
            # 1. 基学习器基于权重分布Dt的训练集训练以及预测
            self.base_estimator[idx].fit(x_train, y_train, sample_weight=sample_weight)
            y_hat = self.base_estimator[idx].predict(x_train)  # 当前训练集的预测值
            # 2. 计算最大绝对误差、相对误差、回归误差率
            errors = self._cal_loss(y_train, y_hat)  # 相对误差
            error_rate = np.dot(errors, sample_weight / n_samples)  # 回归误差率
            # 3. 计算当前ht的置信度,基学习器的权重参数
            alpha_rate = error_rate / (1 - error_rate)
            self.estimator_weights.append(alpha_rate)
            # 4. 更新下一轮的权重分布
            sample_weight *= np.power(alpha_rate, 1 - errors)
            sample_weight = sample_weight / np.sum(sample_weight) * n_samples
        # 5. 计算基学习器的权重系数以及考虑学习率
        self.estimator_weights = np.log(1 / np.asarray(self.estimator_weights))
        for i in range(self.n_estimators):
            self.estimator_weights[i] *= np.power(self.learning_rate, i)

    def predict(self, x_test):
        """
        Adaboost回归算法预测,按照加权中位数以及加权平均两种结合策略
        :param x_test: 测试样本集
        :return:
        """
        x_test = np.asarray(x_test)
        if self.comb_strategy == "weight_mean":  # 加权平均
            self.estimator_weights /= np.sum(self.estimator_weights)
            # n * T
            y_hat_mat = np.array([self.estimator_weights[i] *
                                  self.base_estimator[i].predict(x_test)
                                  for i in range(self.n_estimators)])
            # print(y_hat_mat.shape) (10, 5160)
            return np.sum(y_hat_mat, axis=0)
        elif self.comb_strategy == "weight_median":  # 加权中位数
            # T个基学习器的预测结果构成一个二维数组(10, 5160)
            y_hat_mat = np.array([self.estimator_weights[i] *
                                  self.base_estimator[i].predict(x_test)
                                  for i in range(self.n_estimators)]).T
            sorted_idx = np.argsort(y_hat_mat, axis=1)  # 二维数组
            # 按照每个样本预测值的升序排列序号,排序权重系数,然后累加计算
            weight_cdf = np.cumsum(self.estimator_weights[sorted_idx], axis=1)
            # 选择最小的t,如下代码产生二维bool数组
            median_or_above = weight_cdf >= 0.5 * weight_cdf[:, -1][:, np.newaxis]
            # print(median_idx)
            median_idx = np.argmax(median_or_above, axis=1)  # 返回每个样本的t索引值
            median_estimators = sorted_idx[np.arange(x_test.shape[0]), median_idx]
            return y_hat_mat[np.arange(x_test.shape[0]), median_estimators]


1.3 SAMME算法

samme_r_muti_classifier.py 

import numpy as np
import copy
from ch4.decision_tree_C import DecisionTreeClassifier


class SAMMERClassifier:
    """
    SAMME.R算法是将SAMME拓展到连续数值型的范畴。
    基学习器的输出为连续型,一般为类别概率的预测值。
    """
    def __init__(self, base_estimator=None, n_estimators=10):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        # 如果不提供基学习器,则默认按照深度为2的决策树作为基分类器
        if self.base_estimator is None:
            self.base_estimator = DecisionTreeClassifier(max_depth=2)
        if type(base_estimator) != list:
            # 同质(同种类型)的分类器,深拷贝
            self.base_estimator = [copy.deepcopy(self.base_estimator)
                                   for _ in range(self.n_estimators)]
        else:
            # 异质(不同种类型)的分类器
            self.n_estimators = len(self.base_estimator)
        self.estimator_weights = []  # 每个基学习器的权重系数
        self.n_samples, self.n_class = None, None  # 样本量和类别数

    def _target_encoding(self, y_train):
        """
        对目标值进行编码
        :param y_train: 训练目标集
        :return:
        """
        self.n_samples, self.n_class = len(y_train), len(set(y_train))
        target = -1 / (self.n_class - 1) * np.ones((self.n_samples, self.n_class))
        for i in range(self.n_samples):
            target[i, y_train[i]] = 1  # 对应该样本的类别所在编码中的列改为1
        return target

    def fit(self, x_train, y_train):
        """
        训练SAMME.Rt每个基学习器,根据预测类别概率计算权重分布
        :param x_train: 训练集,二维数组:m * k
        :param y_train: 目标集
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        target = self._target_encoding(y_train)  # 编码
        sample_weight = np.ones(self.n_samples)  # 为适应自写的基学习器,设置样本均匀权重为1.0
        # 针对每一个基学习器,根据带有权重分布的训练集训练基学习器,计算相关参数
        c = (self.n_class - 1) / self.n_class
        for idx in range(self.n_estimators):
            # 1. 使用具有权重分布的Dm的训练数据集学习,并预测
            self.base_estimator[idx].fit(x_train, y_train, sample_weight=sample_weight)
            # 根据训练的基学习器,获得其样本的预测类别概率
            pred_p = self.base_estimator[idx].predict_proba(x_train)
            # 针对预测概率,小于eps的值替换为eps,避免log函数溢出
            np.clip(pred_p, np.finfo(pred_p.dtype).eps, None, out=pred_p)
            # 2. 更新样本权重
            sample_weight *= np.exp(-c * (target * np.log(pred_p)).sum(axis=1))
            sample_weight = sample_weight / np.sum(sample_weight) * self.n_samples

    @staticmethod
    def softmax_func(x):
        """
        softmax函数,为避免上溢或下溢,对参数x做限制
        :param x: 数组: batch_size * n_classes
        :return:  1 * n_classes
        """
        exps = np.exp(x - np.max(x))  # 避免溢出,每个数减去其最大值
        exp_sum = np.sum(exps, axis=1, keepdims=True)
        return exps / exp_sum

    def predict_proba(self, x_test):
        """
        预测测试样本所属类别概率,软投票
        :param x_test: 测试样本集
        :return:
        """
        x_test = np.asarray(x_test)
        C_x = np.zeros((x_test.shape[0], self.n_class))
        for i in range(self.n_estimators):
            y_prob = self.base_estimator[i].predict_proba(x_test)
            np.clip(y_prob, np.finfo(y_prob.dtype).eps, None, out=y_prob)
            y_ln = np.log(y_prob)
            C_x += (self.n_class - 1) * (y_ln - np.sum(y_ln, axis=1, keepdims=True) / self.n_class)
        return C_x

    def predict(self, x_test):
        """
        预测测试样本所属类别
        :param x_test: 测试样本集
        :return:
        """
        return np.argmax(self.predict_proba(x_test), axis=1)

1.4 Adaboost分类算法测试

test_adaboost_c.py

from sklearn.datasets import make_classification
from sklearn.metrics import classification_report

from ch4.decision_tree_C import DecisionTreeClassifier  # 基学习器,决策树
from ch3.logistic_regression_2class import LogisticRegression  # 逻辑回归
from ch6.svm_smo_classifier import SVMClassifier  # 支持向量机
from adaboost_discrete_c import AdaBoostClassifier
from ch8.plt_decision_function import plot_decision_function


X, y = make_classification(n_samples=300, n_features=2, n_informative=1, n_redundant=0, n_repeated=0, n_classes=2,
                           n_clusters_per_class=1, class_sep=1, random_state=42)
# 同质:同种类型的基学习器
base_tree = DecisionTreeClassifier(max_depth=3, is_feature_all_R=True, max_bins=20)
ada_bc = AdaBoostClassifier(base_estimator=base_tree, n_estimators=10, learning_rate=1.0)
ada_bc.fit(X, y)  # adaboost训练
print("基学习器的权重系数:\n", ada_bc.estimator_weights)
y_pred = ada_bc.predict(X)  # 预测类别
print(classification_report(y, y_pred))
plot_decision_function(X, y, ada_bc)

# 异质:不同类型的基学习器
log_reg = LogisticRegression(batch_size=20, max_epochs=5)
cart = DecisionTreeClassifier(max_depth=4, is_feature_all_R=True)
svm = SVMClassifier(C=5.0, max_epochs=20)
ada_bc2 = AdaBoostClassifier(base_estimator=[log_reg, cart, svm], learning_rate=1.0)
ada_bc2.fit(X, y)  # adaboost训练
print("异质基学习器的权重系数:", ada_bc2.estimator_weights)
y_pred = ada_bc2.predict(X)  # 预测类别
print(classification_report(y, y_pred))
plot_decision_function(X, y, ada_bc2)


 test_adaboost_c2.py

import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score
from sklearn.datasets import make_blobs
from ch4.decision_tree_C import DecisionTreeClassifier
from ch8.adaboost_discrete_c import AdaBoostClassifier


X, y = make_blobs(n_samples=1000, n_features=10, centers=5, cluster_std=[1.5, 2, 0.9, 3, 2.8], random_state=0)
X = StandardScaler().fit_transform(X)

base_em = DecisionTreeClassifier(max_depth=4, is_feature_all_R=True, max_bins=10)
acc_scores = []  # 存储每次交叉验证的均分
# 用10折交叉验证评估不同基学习器个数T下的分类正确率
for n in range(1, 21):
    scores = []  # 一次交叉验证的acc均值
    k_fold = KFold(n_splits=10)
    for idx_train, idx_test in k_fold.split(X, y):
        classifier = AdaBoostClassifier(base_estimator=base_em, n_estimators=n, learning_rate=1)
        classifier.fit(X[idx_train, :], y[idx_train])
        y_test_pred = classifier.predict(X[idx_test, :])
        scores.append(accuracy_score(y[idx_test], y_test_pred))
    acc_scores.append(np.mean(scores))
    print(n, ":", acc_scores[-1])

plt.figure(figsize=(7, 5))
plt.plot(range(1, 21), acc_scores, "ko-", lw=1)
plt.xlabel("Number of Estimations", fontdict={"fontsize": 12})
plt.ylabel("Accuracy Score", fontdict={"fontsize": 12})
plt.title("Cross Validation Scores of Different Number of Base Learners", fontdict={"fontsize": 14})
plt.grid(ls=":")
plt.show()

1.5 Adaboost回归算法测试

test_adaboost_regressor.py

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import r2_score
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from ch4.decision_tree_R import DecisionTreeRegression
from ch8.adaboost_regressor import AdaBoostRegressior


housing = fetch_california_housing()
X, y = housing.data, housing.target
# print(X.shape)
# print(y.shape)
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

base_ht = DecisionTreeRegression(max_bins=50, max_depth=5)
plt.figure(figsize=(14, 15))


def train_plot(cs, loss, i):
    abr = AdaBoostRegressior(base_estimator=base_ht, n_estimators=30,
                             comb_strategy=cs, loss=loss)
    abr.fit(X_train, y_train)
    y_hat = abr.predict(X_test)
    # print(r2_score(y_test, y_hat))
    plt.subplots(231 + i)
    idx = np.argsort(y_test)  # 对真值排序
    plt.plot(y_test[idx], "k-", lw=1.5, label="Test True")
    plt.plot(y_hat[idx], "r-", lw=1, label="Predict")
    plt.legend(frameon=False)
    plt.title("%s, %s, R2 = %.5f, MSE = %.5f" %
              (cs, loss, r2_score(y_test, y_hat), ((y_test - y_hat) ** 2).mean()))
    plt.xlabel("Test Samples Serial Number", fontdict={"fontsize": 12})
    plt.ylabel("True VS Predict", fontdict={"fontsize": 12})
    plt.grid(ls=":")
    print(cs, loss)


loss_func = ["linear", "square", "exp"]
comb_strategy = ["weight_mean", "weight_median"]
i = 0
for loss in loss_func:
    for cs in comb_strategy:
        train_plot(cs, loss, i)
        i += 1
plt.show()

 1.6 SAMME算法测试

test_samme_r_c.py

import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score
from sklearn.datasets import make_blobs
# from ch4.decision_tree_C import DecisionTreeClassifierR
from sklearn.tree import DecisionTreeClassifier
from ch8.samme_r_muti_classifier import SAMMERClassifier


X, y = make_blobs(n_samples=1000, n_features=10, centers=5, cluster_std=[1.5, 2, 0.9, 3, 2.8], random_state=0)
X = StandardScaler().fit_transform(X)

base_em = DecisionTreeClassifier(max_depth=4)
acc_scores = []  # 存储每次交叉验证的均分
# 用10折交叉验证评估不同基学习器个数T下的分类正确率
for n in range(1, 21):
    scores = []  # 一次交叉验证的acc均值
    k_fold = KFold(n_splits=10)
    for idx_train, idx_test in k_fold.split(X, y):
        classifier = SAMMERClassifier(base_estimator=base_em, n_estimators=n)
        classifier.fit(X[idx_train, :], y[idx_train])
        y_test_pred = classifier.predict(X[idx_test, :])
        scores.append(accuracy_score(y[idx_test], y_test_pred))
    acc_scores.append(np.mean(scores))
    print(n, ":", acc_scores[-1])

plt.figure(figsize=(7, 5))
plt.plot(range(1, 21), acc_scores, "ko-", lw=1)
plt.xlabel("Number of Estimations", fontdict={"fontsize": 12})
plt.ylabel("Accuracy Score", fontdict={"fontsize": 12})
plt.title("Cross Validation Scores of Different Number of Base Learners", fontdict={"fontsize": 14})
plt.grid(ls=":")
plt.show()

1.7 可视化分类边界函数

 plt_decision_function.py

import matplotlib.pyplot as plt
import numpy as np


def plot_decision_function(X, y, clf, is_show=True):
    """
    可视化分类边界函数
    :param X: 测试样本
    :param y: 测试样本的类别
    :param clf: 分类模型
    :param is_show: 是否在当前显示图像,用于父函数绘制子图
    :return:
    """
    if is_show:
        plt.figure(figsize=(7, 5))
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xi, yi = np.meshgrid(np.linspace(x_min, x_max, 100),
                         np.linspace(y_min, y_max, 100))
    y_pred = clf.predict(np.c_[xi.ravel(), yi.ravel()])  # 模型预测值
    y_pred = y_pred.reshape(xi.shape)
    plt.contourf(xi, yi, y_pred, cmap="winter", alpha=0.4)
    plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors="k")
    plt.xlabel("Feature 1", fontdict={"fontsize": 12})
    plt.ylabel("Feature 2", fontdict={"fontsize": 12})
    plt.title("Model Classification Boundary", fontdict={"fontsize": 14})
    if is_show:
        plt.show()

二、提升树算法boosting tree

2.1 提升树回归算法

boostingtree_r.py

import numpy as np
import copy
from ch4.decision_tree_R import DecisionTreeRegression  # CART


class BoostTreeRegressor:
    """
    提升树回归算法,采用平方误差损失
    """
    def __init__(self, base_estimator=None, n_estimators=10, learning_rate=1.0):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        :param learning_rate: 学习率,降低后续训练的基分类器的权重,避免过拟合
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.learning_rate = learning_rate
        # 如果不提供基学习器,则默认按照深度为2的决策树作为基分类器
        if self.base_estimator is None:
            self.base_estimator = DecisionTreeRegression(max_depth=2)
        if type(base_estimator) != list:
            # 同质(同种类型)的分类器,深拷贝
            self.base_estimator = [copy.deepcopy(self.base_estimator)
                                   for _ in range(self.n_estimators)]
        else:
            # 异质(不同种类型)的分类器
            self.n_estimators = len(self.base_estimator)

    def fit(self, x_train, y_train):
        """
        提升树的训练,针对每个基决策树算法,拟合上一轮的残差
        :param x_train: 训练集
        :param y_train: 目标集
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        # 1. 训练第一棵回归决策树,并预测
        self.base_estimator[0].fit(x_train, y_train)
        y_hat = self.base_estimator[0].predict(x_train)
        y_residual = y_train - y_hat  # 残差,MSE的负梯度
        # 2. 从第二棵树开始,每一轮拟合上一轮的残差
        for idx in range(1, self.n_estimators):
            self.base_estimator[idx].fit(x_train, y_residual)  # 拟合残差
            # 累加第m-1棵树的预测值,当前模型是f_(m-1)
            y_hat += self.base_estimator[idx].predict(x_train) * self.learning_rate
            y_residual = y_train - y_hat  # 当前模型的残差

    def predict(self, x_test):
        """
        回归提升树的预测
        :param x_test: 测试样本集
        :return:
        """
        x_test = np.asarray(x_test)
        y_hat_mat = np.sum([self.base_estimator[0].predict(x_test)] +
                            [np.power(self.learning_rate, i) * self.base_estimator[i].predict(x_test)
                             for i in range(1, self.n_estimators - 1)] +
                            [self.base_estimator[-1].predict(x_test)], axis=0)
        return y_hat_mat


2.2 梯度提升树分类算法

gradientboosting_c

import numpy as np
import copy
from ch4.decision_tree_R import DecisionTreeRegression  # CART


class GradientBoostClassifier:
    """
    梯度提升树多分类算法:多分类也可用回归树来做,即训练与类别数相同的几组回归树,
    每一组代表一个类别,然后对所有组的输出进行softmax操作将其转换为概率分布,
    再通过交叉熵或者KL一类的损失函数求每棵树相应的负梯度,指导下一轮的训练。
    """
    def __init__(self, base_estimator=None, n_estimators=10, learning_rate=1.0):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        :param learning_rate: 学习率,降低后续训练的基分类器的权重,避免过拟合
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.learning_rate = learning_rate
        # 如果不提供基学习器,则默认按照深度为2的决策树作为基分类器
        if self.base_estimator is None:
            self.base_estimator = DecisionTreeRegression(max_depth=2)
        if type(base_estimator) != list:
            # 同质(同种类型)的分类器,深拷贝
            self.base_estimator = [copy.deepcopy(self.base_estimator)
                                   for _ in range(self.n_estimators)]
        else:
            # 异质(不同种类型)的分类器
            self.n_estimators = len(self.base_estimator)
        self.base_estimators = []  # 扩展到class_num组分类器

    @staticmethod
    def one_hot_encoding(target):
        class_labels = np.unique(target)
        target_y = np.zeros((len(target), len(class_labels)), dtype=np.int32)
        for i, label in enumerate(target):
            target_y[i, label] = 1  # 对应类别所在的列为1
        return target_y

    @staticmethod
    def softmax_func(x):
        exps = np.exp(x - np.max(x))
        return exps / np.sum(exps, axis=1, keepdims=True)

    def fit(self, x_train, y_train):
        """
        梯度提升分类算法的训练,共训练M * K个基学习器
        :param x_train: 训练集
        :param y_train: 目标集
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        class_num = len(np.unique(y_train))  # 类别数
        y_encoded = self.one_hot_encoding(y_train)
        # 深拷贝class_num组分类器,每组(每个类别)n_estimators个基学习器
        # 假设是三分类:[[0, 1, 2, ..., 9], [10], [10]]
        self.base_estimators = [copy.deepcopy(self.base_estimator) for _ in range(class_num)]

        # 初始化第一轮基学习器,针对每个类别,分别训练一个基学习器
        y_hat_scores = []  # 用于存储每个类别的预测值
        for c_idx in range(class_num):
            self.base_estimators[c_idx][0].fit(x_train, y_encoded[:, c_idx])
            y_hat_scores.append(self.base_estimators[c_idx][0].predict(x_train))
        y_hat_scores = np.c_[y_hat_scores].T  # 把每个类别的预测值构成一列,(120, 3) (n_samples, class_num)
        # print(np.asarray(y_hat_vals).shape)
        grad_y = y_encoded - self.softmax_func(y_hat_scores)  # 按类别计算样本的负梯度值

        # 训练后续基学习器,共M - 1轮,每轮针对每个类别,分别训练一个基学习器
        for idx in range(1, self.n_estimators):
            y_hat_values = []  # 用于存储每个类别的预测值
            for c_idx in range(class_num):
                self.base_estimators[c_idx][idx].fit(x_train, grad_y[:, c_idx])
                y_hat_values.append(self.base_estimators[c_idx][idx].predict(x_train))
            y_hat_scores += np.c_[y_hat_values].T * self.learning_rate
            # print(np.asarray(y_hat_vals).shape)
            grad_y = y_encoded - self.softmax_func(y_hat_scores)  # 按类别计算样本的负梯度值

    def predict_proba(self, x_test):
        """
        预测测试样本所属类别的概率
        :param x_test: 测试样本集
        :return:
        """
        x_test = np.asarray(x_test)
        y_hat_scores = []
        for c_idx in range(len(self.base_estimators)):
            # 取当前类别的M个基学习器
            estimator = self.base_estimators[c_idx]
            y_hat_scores.append(np.sum([estimator[0].predict(x_test)] +
                                       [self.learning_rate * estimator[i].predict(x_test)
                                       for i in range(1, self.n_estimators - 1)] +
                                       [estimator[-1].predict(x_test)], axis=0))
        # y_hat_scores的维度(3 * 30)
        return self.softmax_func(np.c_[y_hat_scores].T)

    def predict(self, x_test):
        """
        预测测试样本所属类别,概率大的idx标记为类别
        :param x_test: 测试样本集
        :return:
        """
        print(self.predict_proba(x_test))
        return np.argmax(self.predict_proba(x_test), axis=1)

 2.3 梯度提升树回归算法

gradientboosting_r

import numpy as np
import copy
from ch4.decision_tree_R import DecisionTreeRegression  # CART


class GradientBoostRegressor:
    """
    梯度提升树回归算法,损失函数:五个,以损失函数在当前模型的负梯度近似为残差
    """
    def __init__(self, base_estimator=None, n_estimators=10, learning_rate=1.0,
                 loss="ls", huber_threshold=0.1, quantile_threshold=0.5):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        :param learning_rate: 学习率,降低后续训练的基分类器的权重,避免过拟合
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.learning_rate = learning_rate
        # 如果不提供基学习器,则默认按照深度为2的决策树作为基分类器
        if self.base_estimator is None:
            self.base_estimator = DecisionTreeRegression(max_depth=2)
        if type(base_estimator) != list:
            # 同质(同种类型)的分类器,深拷贝
            self.base_estimator = [copy.deepcopy(self.base_estimator)
                                   for _ in range(self.n_estimators)]
        else:
            # 异质(不同种类型)的分类器
            self.n_estimators = len(self.base_estimator)
        self.loss = loss  # 损失函数的类型
        self.huber_threshold = huber_threshold  # 仅对Huber损失有效
        self.quantile_threshold = quantile_threshold  # 仅对分位数损失函数有效

    def _cal_negative_gradient(self, y_true, y_pred):
        """
        计算负梯度值
        :param y_true: 真值
        :param y_pred: 预测值
        :return:
        """
        if self.loss.lower() == "ls":  # MSE
            return y_true - y_pred
        elif self.loss.lower() == "lae":  # MAE
            return np.sign(y_true - y_pred)
        elif self.loss.lower() == "huber":  # 平滑平均绝对损失
            return np.where(np.abs(y_true - y_pred) > self.huber_threshold,
                            self.huber_threshold * np.sign(y_true - y_pred),
                            y_true - y_pred)
        elif self.loss.lower() == "quantile":  # 分位数损失
            return np.where(y_true > y_pred, self.quantile_threshold,
                            self.quantile_threshold - 1)
        elif self.loss.lower() == "logcosh":  # 双曲余弦的对数的负梯度
            return -np.tanh(y_pred - y_true)
        else:
            raise ValueError("仅限于ls、lae、huber、quantile和logcosh,选择有误...")

    def fit(self, x_train, y_train):
        """
        提升树的训练,针对每个基决策树算法,拟合上一轮的残差
        1. 假设回归决策树以mse构建的,针对不同的损失函数,计算不同的基尼指数划分标准
        2. 预测,集成,也根据不同的损失函数,预测叶子结点的输出...
        :param x_train: 训练集
        :param y_train: 目标集
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        # 1. 训练第一棵回归决策树,并预测
        self.base_estimator[0].fit(x_train, y_train)
        y_hat = self.base_estimator[0].predict(x_train)
        y_residual = self._cal_negative_gradient(y_train, y_hat)  # 负梯度
        # 2. 从第二棵树开始,每一轮拟合上一轮的残差
        for idx in range(1, self.n_estimators):
            self.base_estimator[idx].fit(x_train, y_residual)  # 拟合残差
            # 累加第m-1棵树的预测值,当前模型是f_(m-1)
            y_hat += self.base_estimator[idx].predict(x_train) * self.learning_rate
            y_residual = self._cal_negative_gradient(y_train, y_hat)  # 负梯度

    def predict(self, x_test):
        """
        回归提升树的预测
        :param x_test: 测试样本集
        :return:
        """
        x_test = np.asarray(x_test)
        y_hat_mat = np.sum([self.base_estimator[0].predict(x_test)] +
                            [np.power(self.learning_rate, i) * self.base_estimator[i].predict(x_test)
                             for i in range(1, self.n_estimators - 1)] +
                            [self.base_estimator[-1].predict(x_test)], axis=0)
        return y_hat_mat


 2.4 提升树算法测试

test_boosting_tree_r.py

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import r2_score
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from ch4.decision_tree_R import DecisionTreeRegression
from ch8.boostingtree_r import BoostTreeRegressor
from sklearn.tree import DecisionTreeRegressor


# housing = fetch_california_housing()
# X, y = housing.data[0:20000:100, :], housing.target[0:20000:100]
# print(X.shape)
# print(y.shape)
# X = StandardScaler().fit_transform(X)
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

X = np.linspace(1, 10, 10).reshape(-1, 1)
y = np.array([5.56, 5.70, 5.91, 6.40, 6.80, 7.05, 8.90, 8.70, 9.00, 9.05])

# base_ht = DecisionTreeRegression(max_bins=10, max_depth=1)
base_ht = DecisionTreeRegressor(max_depth=1)
# n_estimators = np.linspace(2, 31, 29, dtype=np.int32)
# r2_scores = []
# for n in n_estimators:
#     btr = BoostTreeRegressior(base_estimator=base_ht, n_estimators=n)
#     btr.fit(X_train, y_train)
#     y_hat = btr.predict(X_test)
#     # print(r2_score(y_test, y_hat))
#     r2_scores.append(r2_score(y_test, y_hat))
#     print(n, ":", r2_scores[-1])

r2_scores = []
for n in range(1, 7):
    btr = BoostTreeRegressor(base_estimator=base_ht, n_estimators=n)
    btr.fit(X, y)
    y_hat = btr.predict(X)
    # print(r2_score(y_test, y_hat))
    r2_scores.append(r2_score(y, y_hat))
    print(n, ":", r2_scores[-1], np.sum((y - y_hat) ** 2))

# plt.figure(figsize=(7, 5))
# plt.plot(n_estimators, r2_scores, "ko-", lw=1)
# plt.show()

# idx = np.argsort(y_test)  # 对真值排序
#
# plt.figure(figsize=(7, 5))
# plt.plot(y_test[idx], "k-", lw=1.5, label="Test True")
# plt.plot(y_hat[idx], "r-", lw=1, label="Predict")
# plt.legend(frameon=False)
# plt.title("Regression Boosting Tree, R2 = %.5f, MSE = %.5f" %
#           (r2_score(y_test, y_hat), ((y_test - y_hat) ** 2).mean()))
# plt.xlabel("Test Samples Serial Number", fontdict={"fontsize": 12})
# plt.ylabel("True VS Predict", fontdict={"fontsize": 12})
# plt.grid(ls=":")
#
# plt.show()

 2.5 梯度提升树算法测试

test_gradboost_c1.py

from ch8.gradientboosting_c import GradientBoostClassifier
from sklearn.datasets import load_iris, load_digits, load_breast_cancer
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from ch4.decision_tree_R import DecisionTreeRegression
from sklearn.tree import DecisionTreeRegressor


# iris = load_iris()
# X, y = iris.data, iris.target

digits = load_digits()
X, y = digits.data, digits.target

# bc_data = load_breast_cancer()
# X, y = bc_data.data, bc_data.target

X = PCA(n_components=10).fit_transform(X)
X = StandardScaler().fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True, random_state=42)

# base_es = DecisionTreeRegression(max_bins=50, max_depth=3)
base_es = DecisionTreeRegressor(max_depth=3)

gbc = GradientBoostClassifier(base_estimator=base_es, n_estimators=50)
gbc.fit(X_train, y_train)
y_hat = gbc.predict(X_test)
print(classification_report(y_test, y_hat))

 三、Bagging算法

3.1 Bagging算法

bagging_c_r.py

import numpy as np
import copy
from ch4.decision_tree_R import DecisionTreeRegression  # CART
from ch4.decision_tree_C import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, r2_score


class BaggingClassifierRegressor:
    """
    1. Bagging的基本流程:采样出T个含m个训练样本的采样集,然后基于每个采样集训练出一个基学习器,再集成。
    2. 预测输出进行结合:Bagging通常对分类任务采用简单投票法,对回归任务使用简单平均法。
    3. 把回归任务与分类任务集成到一个算法中,右参数task来控制,包外估计OOB控制
    """
    def __init__(self, base_estimator=None, n_estimators=10, task="C", OOB=False):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        :param task: 任务:C代表分类任务,R代表回归任务
        :param OOB: 布尔变量,True表示进行包外估计
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.task = task
        if task.lower() not in ["c", "r"]:
            raise ValueError("Bagging任务仅限分类(C/c)、回归(R/r)")
        # 如果不提供基学习器,则默认按照深度为2的决策树作为基分类器
        if self.base_estimator is None:
            if self.task.lower() == "c":
                self.base_estimator = DecisionTreeClassifier()
            elif self.task.lower() == "r":
                self.base_estimator = DecisionTreeRegression()
        if type(base_estimator) != list:
            # 同质(同种类型)的分类器,深拷贝
            self.base_estimator = [copy.deepcopy(self.base_estimator)
                                   for _ in range(self.n_estimators)]
        else:
            # 异质(不同种类型)的分类器
            self.n_estimators = len(self.base_estimator)
        self.OOB = OOB  # 是否进行包外估计
        self.oob_indices = []  # 保存每次有放回采样未被使用的样本索引
        self.y_oob_hat = None  # 包括估计样本预测值(回归)或预测类别概率(分类)
        self.oob_score = None  # 包外估计的评分,分类和回归

    def fit(self, x_train, y_train):
        """
        Bagging算法(包含分类和回归)的训练
        :param x_train: 训练集
        :param y_train: 目标集
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        n_samples = x_train.shape[0]
        for estimator in self.base_estimator:
            # 1. 有放回的随机重采样训练集
            indices = np.random.choice(n_samples, n_samples, replace=True)  # 采样样本索引
            indices = np.unique(indices)
            x_bootstrap, y_bootstrap = x_train[indices, :], y_train[indices]
            # 2. 基于采样数据,训练基学习器
            estimator.fit(x_bootstrap, y_bootstrap)
            # 存储每个基学习器未使用的样本索引
            n_indices = set(np.arange(n_samples)).difference(set(indices))
            self.oob_indices.append(list(n_indices))  # 每个基学习器未参与训练的样本索引

        # 3. 包外估计
        if self.OOB:
            if self.task.lower() == "c":
                self._oob_score_classifier(x_train, y_train)
            else:
                self._oob_score_regressor(x_train, y_train)

    def _oob_score_classifier(self, x_train, y_train):
        """
        分类任务的包外估计
        :param x_train:
        :param y_train:
        :return:
        """
        self.y_oob_hat, y_true = [], []
        for i in range(x_train.shape[0]):  # 针对每个训练样本
            y_hat_i = []  # 当前样本在每个基学习器下的预测概率,个数未必等于self.n_estimators
            for idx in range(self.n_estimators):  # 针对每个基学习器
                if i in self.oob_indices[idx]:  # 如果该样本属于包外估计
                    y_hat = self.base_estimator[idx].predict_proba(x_train[i, np.newaxis])
                    y_hat_i.append(y_hat[0])
            # print(y_hat_i)
            if y_hat_i:  # 非空,计算各基学习器预测类别概率的均值
                self.y_oob_hat.append(np.mean(np.c_[y_hat_i], axis=0))
                y_true.append(y_train[i])  # 存储对应的真值
        self.y_oob_hat = np.asarray(self.y_oob_hat)
        self.oob_score = accuracy_score(y_true, np.argmax(self.y_oob_hat, axis=1))

    def _oob_score_regressor(self, x_train, y_train):
        """
        回归任务的包外估计
        :param x_train:
        :param y_train:
        :return:
        """
        self.y_oob_hat, y_true = [], []
        for i in range(x_train.shape[0]):  # 针对每个训练样本
            y_hat_i = []  # 当前样本在每个基学习器下的预测概率,个数未必等于self.n_estimators
            for idx in range(self.n_estimators):  # 针对每个基学习器
                if i in self.oob_indices[idx]:  # 如果该样本属于包外估计
                    y_hat = self.base_estimator[idx].predict(x_train[i, np.newaxis])
                    y_hat_i.append(y_hat[0])
            # print(y_hat_i)
            if y_hat_i:  # 非空,计算各基学习器预测类别概率的均值
                self.y_oob_hat.append(np.mean(y_hat_i))
                y_true.append(y_train[i])  # 存储对应的真值
        self.y_oob_hat = np.asarray(self.y_oob_hat)
        self.oob_score = r2_score(y_true, self.y_oob_hat)

    def predict_proba(self, x_test):
        """
        分类任务中测试样本所属类别的概率预测
        :param x_test:
        :return:
        """
        if self.task.lower() != "c":
            raise ValueError("predict_proba()仅适用于分类任务。")
        x_test = np.asarray(x_test)
        y_test_hat = []  # 用于存储测试样本所属类别概率
        for estimator in self.base_estimator:
            y_test_hat.append(estimator.predict_proba(x_test))
        # print(y_test_hat)
        return np.mean(y_test_hat, axis=0)

    def predict(self, x_test):
        """
        分类任务:预测测试样本所属类别,类别概率大者索引为所属类别
        回归任务:预测测试样本,对每个基学习器预测值简单平均
        :param x_test:
        :return:
        """
        if self.task.lower() == "c":
            return np.argmax(self.predict_proba(x_test), axis=1)
        elif self.task.lower() == "r":
            y_hat = []  # 预测值
            for estimator in self.base_estimator:
                y_hat.append(estimator.predict(x_test))
            return np.mean(y_hat, axis=0)

3.2 Bagging算法测试

test_bagging_c1.py

from sklearn.datasets import load_iris
from ch8.bagging_c_r import BaggingClassifierRegressor
from ch4.decision_tree_C import DecisionTreeClassifier
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler


iris = load_iris()
X, y = iris.data, iris.target
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, shuffle=True, random_state=42)

base_es = DecisionTreeClassifier(max_depth=10, max_bins=50, is_feature_all_R=True)
bagcr = BaggingClassifierRegressor(base_estimator=base_es, n_estimators=20, task="c", OOB=True)
bagcr.fit(X_train, y_train)
y_hat = bagcr.predict(X_test)
print(classification_report(y_test, y_hat))
print("包外估计的精度:", bagcr.oob_score)

 test_bagging_c2.py

from sklearn.datasets import load_iris
from ch8.bagging_c_r import BaggingClassifierRegressor
from ch4.decision_tree_C import DecisionTreeClassifier
from sklearn.metrics import classification_report, accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt


nursery = pd.read_csv("../ch4/data/nursery.csv").dropna()
X, y = np.asarray(nursery.iloc[:, :-1]), np.asarray(nursery.iloc[:, -1])
y = LabelEncoder().fit_transform(y)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, shuffle=True, random_state=42)

base_es = DecisionTreeClassifier(max_depth=10)
bagcr = BaggingClassifierRegressor(base_estimator=base_es, n_estimators=30, task="c")
bagcr.fit(X_train, y_train)
y_hat = bagcr.predict(X_test)
print(classification_report(y_test, y_hat))
# print("包外估计的精度:", bagcr.oob_score)

y_test_scores = []
for i in range(30):
    bagcr = BaggingClassifierRegressor(base_estimator=base_es, n_estimators=1, task="c")
    bagcr.fit(X_train, y_train)
    y_hat = bagcr.predict(X_test)
    y_test_scores.append(accuracy_score(y_test, y_hat))

plt.figure(figsize=(7, 5))
plt.plot(range(1, 31), y_test_scores, "ko-", lw=1.5)
plt.xlabel("Training Times", fontsize=12)
plt.ylabel("Test Accuracy", fontsize=12)
plt.grid(ls=":")
plt.show()


 test_bagging_r.py

import numpy as np
import matplotlib.pyplot as plt
from ch4.decision_tree_R import DecisionTreeRegression
from ch8.bagging_c_r import BaggingClassifierRegressor
from sklearn.metrics import r2_score


f = lambda x: 0.5 * np.exp(-(x + 3) ** 2) + np.exp(-x ** 2) + 1.5 * np.exp(-(x - 3) ** 2)

np.random.seed(0)
N = 200
X = np.random.rand(N) * 10 - 5
X = np.sort(X)
y = f(X) + 0.05 * np.random.randn(N)
X = X.reshape(-1, 1)
# print(X)

base_estimator = DecisionTreeRegression(max_bins=30, max_depth=8)
model = BaggingClassifierRegressor(base_estimator=base_estimator, n_estimators=100, task="r")
model.fit(X, y)

X_test = np.linspace(1.1 * X.min(axis=0), 1.1 * X.max(axis=0), 1000).reshape(-1, 1)

y_bagging_hat = model.predict(X_test)

base_estimator.fit(X, y)
y_cart_hat = base_estimator.predict(X_test)

plt.figure(figsize=(7, 5))
plt.scatter(X, y, s=10, c="k", label="Raw Data")
plt.plot(X_test, f(X_test), "k-", lw=1.5, label="True F(x)")
plt.plot(X_test, y_bagging_hat, "r-", label="Bagging(R2 = %.5f)" % r2_score(f(X_test), y_bagging_hat))
plt.plot(X_test, y_cart_hat, "b-", label="CART(R2 = %.5f)" % r2_score(f(X_test), y_cart_hat))
plt.legend(frameon=False)
plt.xlabel("X", fontsize=12)
plt.ylabel("Y", fontsize=12)
plt.grid(ls=":")
plt.title("Bagging(100 estimators) VS CART Regression", fontsize=14)
plt.show()

四、随机森林算法

4.1 随机森林算法

 rf_classifier_regressor.py

import numpy as np
import copy
from ch4.decision_tree_R import DecisionTreeRegression  # CART
from ch4.decision_tree_C import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, r2_score


class RandomForestClassifierRegressor:
    """
    随机森林RF是Bagging的一个扩展变体。 RF在以决策树为基学习器构建Bagging集成的基础上,
    进一步在决策树的训练过程中引入了随机属性选择, 即对训练样本和输入变量增加随机扰动。
    """
    def __init__(self, base_estimator=None, n_estimators=10, feature_sampling_rate=0.5,
                 task="C", OOB=False, feature_importance=False):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        :param task: 任务:C代表分类任务,R代表回归任务
        :param OOB: 布尔变量,True表示进行包外估计
        :param feature_sampling_rate: 特征变量的抽样率
        :param feature_importance: 布尔变量,表示是否进行特征重要性的评估
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.feature_sampling_rate = feature_sampling_rate
        if task.lower() not in ["c", "r"]:
            raise ValueError("Bagging任务仅限分类(C/c)、回归(R/r)")
        self.task = task
        # 如果不提供基学习器,则默认决策树作为基分类器
        if self.base_estimator is None:
            if self.task.lower() == "c":
                base_estimator = DecisionTreeClassifier()
            elif self.task.lower() == "r":
                base_estimator = DecisionTreeRegression()
        self.base_estimator = [copy.deepcopy(base_estimator)
                               for _ in range(self.n_estimators)]
        self.OOB = OOB  # 是否进行包外估计
        self.oob_indices = []  # 保存每次有放回采样未被使用的样本索引
        self.y_oob_hat = None  # 包括估计样本预测值(回归)或预测类别概率(分类)
        self.oob_score = None  # 包外估计的评分,分类和回归
        self.feature_importance = feature_importance
        self.feature_importance_scores = None  # 特征变量的重要性评分
        self.feature_importance_indices = []  # 针对每个基学习器,存储特征变量的抽样索引

    def fit(self, x_train, y_train):
        """
        随机森林算法(包含分类和回归)的训练
        :param x_train: 训练集
        :param y_train: 目标集
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        n_samples, n_features = x_train.shape
        for estimator in self.base_estimator:
            # 1. 有放回的随机重采样训练集
            indices = np.random.choice(n_samples, n_samples, replace=True)  # 采样样本索引
            indices = np.unique(indices)
            x_bootstrap, y_bootstrap = x_train[indices, :], y_train[indices]
            # 2. 对特征属性变量进行抽样
            fb_num = int(self.feature_sampling_rate * n_features)  # 抽样特征数
            feature_idx = np.random.choice(n_features, fb_num, replace=False)  # 不放回
            self.feature_importance_indices.append(feature_idx)
            x_bootstrap = x_bootstrap[:, feature_idx]  # 获取特征变量抽样后的训练样本
            # 3. 基于采样数据,训练基学习器
            estimator.fit(x_bootstrap, y_bootstrap)
            # 存储每个基学习器未使用的样本索引
            n_indices = set(np.arange(n_samples)).difference(set(indices))
            self.oob_indices.append(list(n_indices))  # 每个基学习器未参与训练的样本索引

        # 4. 包外估计
        if self.OOB:
            if self.task.lower() == "c":
                self._oob_score_classifier(x_train, y_train)
            else:
                self._oob_score_regressor(x_train, y_train)

        # 5. 特征重要性估计
        if self.feature_importance:
            if self.task.lower() == "c":
                self._feature_importance_score_classifier(x_train, y_train)
            else:
                self._feature_importance_score_regressor(x_train, y_train)

    def _oob_score_classifier(self, x_train, y_train):
        """
        分类任务的包外估计
        :param x_train:
        :param y_train:
        :return:
        """
        self.y_oob_hat, y_true = [], []
        for i in range(x_train.shape[0]):  # 针对每个训练样本
            y_hat_i = []  # 当前样本在每个基学习器下的预测概率,个数未必等于self.n_estimators
            for idx in range(self.n_estimators):  # 针对每个基学习器
                if i in self.oob_indices[idx]:  # 如果该样本属于包外估计
                    x_sample = x_train[i, self.feature_importance_indices[idx]]
                    y_hat = self.base_estimator[idx].predict_proba(x_sample.reshape(1, -1))
                    y_hat_i.append(y_hat[0])
            # print(y_hat_i)
            if y_hat_i:  # 非空,计算各基学习器预测类别概率的均值
                self.y_oob_hat.append(np.mean(np.c_[y_hat_i], axis=0))
                y_true.append(y_train[i])  # 存储对应的真值
        self.y_oob_hat = np.asarray(self.y_oob_hat)
        self.oob_score = accuracy_score(y_true, np.argmax(self.y_oob_hat, axis=1))

    def _oob_score_regressor(self, x_train, y_train):
        """
        回归任务的包外估计
        :param x_train:
        :param y_train:
        :return:
        """
        self.y_oob_hat, y_true = [], []
        for i in range(x_train.shape[0]):  # 针对每个训练样本
            y_hat_i = []  # 当前样本在每个基学习器下的预测概率,个数未必等于self.n_estimators
            for idx in range(self.n_estimators):  # 针对每个基学习器
                if i in self.oob_indices[idx]:  # 如果该样本属于包外估计
                    x_sample = x_train[i, self.feature_importance_indices[idx]]
                    y_hat = self.base_estimator[idx].predict(x_sample.reshape(1, -1))
                    y_hat_i.append(y_hat[0])
            # print(y_hat_i)
            if y_hat_i:  # 非空,计算各基学习器预测类别概率的均值
                self.y_oob_hat.append(np.mean(y_hat_i))
                y_true.append(y_train[i])  # 存储对应的真值
        self.y_oob_hat = np.asarray(self.y_oob_hat)
        self.oob_score = r2_score(y_true, self.y_oob_hat)

    def _feature_importance_score_classifier(self, x_train, y_train):
        """
        分类问题的特征变量重要性评估计算
        :param x_train:
        :param y_train:
        :return:
        """
        n_feature = x_train.shape[1]
        self.feature_importance_scores = np.zeros(n_feature)  # 特征变量重要性评分
        for f_j in range(n_feature):  # 针对每个特征变量
            f_j_scores = []  # 当前第j个特征变量在所有基学习器预测的OOB误差变化
            for idx, estimator in enumerate(self.base_estimator):
                f_s_indices = list(self.feature_importance_indices[idx])  # 获取当前基学习器的特征变量索引
                if f_j in f_s_indices:  # 表示当前基学习器中存在第j个特征变量
                    # 1. 计算基于OOB的测试误差error
                    x_samples = x_train[self.oob_indices[idx], :][:, f_s_indices]  # OOB样本以及特征抽样
                    y_hat = estimator.predict(x_samples)
                    error = 1 - accuracy_score(y_train[self.oob_indices[idx]], y_hat)
                    # 2. 计算第j个特征随机打乱顺序后的测试误差
                    np.random.shuffle(x_samples[:, f_s_indices.index(f_j)])  # 原地打乱第j个特征变量取值,其他特征取值不变
                    y_hat_j = estimator.predict(x_samples)
                    error_j = 1 - accuracy_score(y_train[self.oob_indices[idx]], y_hat_j)
                    f_j_scores.append(error_j - error)
            # 3. 计算所有基学习器对当前第j个特征评分的均值
            self.feature_importance_scores[f_j] = np.mean(f_j_scores)
        return self.feature_importance_scores

    def _feature_importance_score_regressor(self, x_train, y_train):
        """
        回归任务的特征变量重要性评估计算
        :param x_train:
        :param y_train:
        :return:
        """
        n_feature = x_train.shape[1]
        self.feature_importance_scores = np.zeros(n_feature)  # 特征变量重要性评分
        for f_j in range(n_feature):  # 针对每个特征变量
            f_j_scores = []  # 当前第j个特征变量在所有基学习器预测的OOB误差变化
            for idx, estimator in enumerate(self.base_estimator):
                f_s_indices = list(self.feature_importance_indices[idx])  # 获取当前基学习器的特征变量索引
                if f_j in f_s_indices:  # 表示当前基学习器中存在第j个特征变量
                    # 1. 计算基于OOB的测试误差error
                    x_samples = x_train[self.oob_indices[idx], :][:, f_s_indices]  # OOB样本以及特征抽样
                    y_hat = estimator.predict[x_samples]
                    error = 1 - r2_score(y_train[self.oob_indices[idx]], y_hat)
                    # 2. 计算第j个特征随机打乱顺序后的测试误差
                    np.random.shuffle(x_samples[:, f_s_indices.index(f_j)])  # 原地打乱第j个特征变量取值,其他特征取值不变
                    y_hat_j = estimator.predict[x_samples]
                    error_j = 1 - r2_score(y_train[self.oob_indices[idx]], y_hat_j)
                    f_j_scores.append(error_j - error)
            # 3. 计算所有基学习器对当前第j个特征评分的均值
            self.feature_importance_scores[f_j] = np.mean(f_j_scores)
        return self.feature_importance_scores

    def predict_proba(self, x_test):
        """
        分类任务中测试样本所属类别的概率预测
        :param x_test:
        :return:
        """
        if self.task.lower() != "c":
            raise ValueError("predict_proba()仅适用于分类任务。")
        x_test = np.asarray(x_test)
        y_test_hat = []  # 用于存储测试样本所属类别概率
        for idx, estimator in enumerate(self.base_estimator):
            x_test_bootstrap = x_test[:, self.feature_importance_indices[idx]]
            y_test_hat.append(estimator.predict_proba(x_test_bootstrap))
        # print(y_test_hat)
        return np.mean(y_test_hat, axis=0)

    def predict(self, x_test):
        """
        分类任务:预测测试样本所属类别,类别概率大者索引为所属类别
        回归任务:预测测试样本,对每个基学习器预测值简单平均
        :param x_test:
        :return:
        """
        if self.task.lower() == "c":
            return np.argmax(self.predict_proba(x_test), axis=1)
        elif self.task.lower() == "r":
            y_hat = []  # 预测值
            for idx, estimator in enumerate(self.base_estimator):
                x_test_bootstrap = x_test[:, self.feature_importance_indices[idx]]
                y_hat.append(estimator.predict(x_test_bootstrap))
            return np.mean(y_hat, axis=0)

 4.2 随机森林算法测试

test_rf_c1.py

 

from sklearn.datasets import load_iris, load_wine, load_digits
from ch8.randomforest.rf_classifier_regressor import RandomForestClassifierRegressor
# from ch4.decision_tree_C import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd


iris = load_iris()
X, y = iris.data, iris.target
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, shuffle=True, random_state=42)

# base_es = DecisionTreeClassifier(max_depth=10, max_bins=50, is_feature_all_R=True)
base_es = DecisionTreeClassifier(max_depth=10)
rf_model = RandomForestClassifierRegressor(base_estimator=base_es, n_estimators=30,
                                        task="c", OOB=True, feature_importance=True)
rf_model.fit(X_train, y_train)
y_hat = rf_model.predict(X_test)
print(classification_report(y_test, y_hat))
print("包外估计的精度:", rf_model.oob_score)
print("特征重要性评分:", rf_model.feature_importance_scores)

plt.figure(figsize=(9, 5))
data_pd = pd.DataFrame([iris.feature_names, rf_model.feature_importance_scores]).T
data_pd.columns = ["Feature Names", "Importance"]
sns.barplot(x="Importance", y="Feature Names", data=data_pd)
plt.title("Iris DataSet Feature Importance Scores", fontdict={"fontsize": 14})
plt.grid(ls=":")
print(data_pd)
plt.show()

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1484150.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数字化转型导师坚鹏:BLM证券公司数字化转型战略

BLM证券公司数字化转型战略 ——以BLM模型为核心,实现知行果合一 课程背景: 很多证券公司存在以下问题: 不知道如何系统地制定证券公司数字化转型战略? 不清楚其它证券公司数字化转型战略是如何制定的? 不知道…

Leetcode560. 和为 K 的子数组 -hot100

题目&#xff1a; 代码(首刷看解析 2024年3月2日&#xff09;&#xff1a; class Solution { public:int subarraySum(vector<int>& nums, int k) {// 前缀和 遍历int res 0;unordered_map<int, int> sumPre;int sum 0;// 关键&#xff1a;初始化sumPre[0]…

艺术家林曦:新的一年|开启人生的最佳竞技状态吧!

开年大吉呀&#xff5e;新的一年&#xff0c;你准备好如何启程了吗&#xff1f;    暄桐是一间传统美学教育教室&#xff0c;创办于2011年&#xff0c;艺术家林曦是创办人和授课老师&#xff0c;教授以书法为主的传统文化和技艺&#xff0c;皆在以书法为起点&#xff0c;亲…

element-plus 的el-img组件访问oss图片自动拼接前端地址

这是我的组件代码 <el-image style"width: 100px; height: 100px" :src"scope.row.logo" />访问时候 竟然凭借上了前端的地址端口 原来是我的oss服务是使用了域名做cdn加速的 内容分发网络&#xff08;CDN&#xff09;或者服务器配置&#xff0c;可…

通过修改host文件来访问GitHub

前言&#xff1a; 由于国内环境的原因&#xff0c;导致我们无法流畅的访问GitHub&#xff0c;。 但是我们可以采取修改host文件来实现流畅访问。 缺点&#xff1a;需要不定时的刷新修改。 操作流程 一、查询IP地址 以下地址可以查询ip地址 http://ip.tool.chinaz.com/ htt…

艾尔登法环备份存档方法

1.PC端使用WinR输入%AppData%\EldenRing 2.如图创建文件夹“我这取名叫备份存档”&#xff0c;将其中的三个文件复制到新建的文件夹中 3.理论上只需要备份替换ER0000.sl2文件即可

《Spring Security 简易速速上手小册》第9章 测试与维护 (2024 最新版)

文章目录 9.1 编写安全测试9.1.1 基础知识9.1.2 重点案例&#xff1a;保护 REST API9.1.3 拓展案例 1&#xff1a;自定义登录逻辑测试9.1.4 拓展案例 2&#xff1a;CSRF 保护测试 9.2 Spring Security 升级和维护9.2.1 基础知识9.2.2 重点案例&#xff1a;适配新的密码存储格式…

智能驾驶规划控制理论学习02-基于搜索的路径规划方法

目录 一、路径搜索问题 二、图论基础 三、图搜索方法 1、广度优先搜索&#xff08;BFS&#xff09; bfs与dfs的区别 bfs的搜索过程 bfs的算法实现 2、迪杰斯特拉算法&#xff08;Dijkstra&#xff09; 核心思想 优先级队列 Dijkstra搜索过程 Dijkstra优缺点…

计算机视觉基础知识(十六)--图像识别

图像识别 信息时代的一门重要技术;目的是让计算机代替人类处理大量的物理信息;随着计算机技术的发展,人类对图像识别技术的认识越来越深刻;图像识别技术利用计算机对图像进行处理\分析\理解,识别不同模式的目标和对象;过程分为信息的获取\预处理\特征抽取和选择\分类器设计\分…

Mybatis | 动态SQL

目录: 动态SQL中的 “元素” :\<if>元素\<choose>、\<when>、\<otherwise>元素\<where>、\<trim>元素\<set>元素\<foreach>元素\<bind>元素 作者简介 &#xff1a;一只大皮卡丘&#xff0c;计算机专业学生&#xff0c;正…

【Python】进阶学习:pandas--如何根据指定条件筛选数据

【Python】进阶学习&#xff1a;pandas–如何根据指定条件筛选数据 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448; 希望…

什么是片内片间均匀性?

均匀性在芯片制程的每一个工序中都需要考虑到&#xff0c;包括薄膜沉积&#xff0c;刻蚀&#xff0c;光刻&#xff0c;cmp&#xff0c;离子注入等。较高的均匀性才能保证芯片的产品与性能。那么片内和片间非均匀性是什么&#xff1f;如何计算&#xff1f;有什么作用呢&#xff…

热点一线总有神秘小盒现身,到底有什么神秘之处?高人气随身WiFi第一名,2024最值得购买的随身WiFi

近日&#xff0c;一位好事儿的网友突然将多个新闻热点的截图发在了自己的社交平台上&#xff0c;引起了大家的广泛关注。原来在这些记者报道一线新闻的时候&#xff0c;总有一个神秘小盒子在若隐若现。后经网友深扒得知这是格行品牌旗下的大热产品——格行随身WiFi。为什么格行…

【C++ AVL树】

文章目录 AVL树AVL树的概念AVL树节点的定义AVL树的插入AVL树的旋转右单旋左单旋左右双旋右左双旋 代码实现 总结 AVL树 AVL树的概念 二叉搜索树在顺序有序或接近有序的情况下&#xff0c;而插入搜索树将退化为单叉树&#xff0c;此时查找的时间复杂度为O(n)&#xff0c;效率低…

Unity游戏输入系统(新版+旧版)

使用新版还是旧版 旧版 using System.Collections; using System.Collections.Generic; using UnityEngine;public class c5 : MonoBehaviour {void Start(){}void Update(){// 注意要在游戏中 点鼠标键盘进行测试// 鼠标// 0左键 1右键 2滚轮if (Input.GetMouseButtonDown(0)…

python爬虫之selenium知识点记录

selenium 一、前期准备 1、概述 selenium本身是一个自动化测试工具。它可以让python代码调用浏览器。并获取到浏览器中加载的各种资源。 我们可以利用selenium提供的各项功能。 帮助我们完成数据的抓取。 2、学习目标 掌握 selenium发送请求&#xff0c;加载网页的方法 掌…

新一代电话机器人开源PHP源代码

使用easyswoole 框架开发的 新一代电话机器人开源PHP源码 项目地址&#xff1a;https://gitee.com/ddrjcode/robotphp 代理商页面演示地址 http://119.23.229.15:8080 用户名&#xff1a;c0508 密码&#xff1a;123456 包含 AI外呼管理&#xff0c;话术管理&#xff0c;CR…

简易内存池2 - 华为OD统一考试(C卷)

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 200分 题解&#xff1a; Java / Python / C 题目描述 请实现一个简易内存池,根据请求命令完成内存分配和释放。 内存池支持两种操作命令&#xff0c;REQUEST和RELEASE&#xff0c;其格式为: REQUEST请求的内存大小 …

golang学习5,glang的web的restful接口

1. //返回json r.GET("/getJson", controller.GetUserInfo) package mainimport (/*"net/http"*/"gin/src/main/controller""github.com/gin-gonic/gin" )func main() {r : gin.Default()r.GET("/get", func(ctx *…

【研发日记】Matlab/Simulink技能解锁(三)——在Stateflow编辑窗口Debug

文章目录 前言 State断点 Transition断点 条件断点 按State步进 Watch Data Value Sequence Viewer 分析和应用 总结 前言 见《【研发日记】Matlab/Simulink技能解锁(一)——在Simulink编辑窗口Debug》 见《【研发日记】Matlab/Simulink技能解锁(二)——在Function编辑…