Mamba与MoE架构强强联合,Mamba-MoE高效提升LLM计算效率和可扩展性

news2024/12/23 10:30:12

43008843de874a75be6866fb07305205.png

论文题目: MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts
论文链接: https://arxiv.org/abs/2401.04081
代码仓库: GitHub - llm-random/llm-random

作为大型语言模型(LLM)基础架构的后起之秀,状态空间模型(State Space Models,SSMs)在序列数据建模领域中已取得了惊人的发展。其中Mamba模型改进了传统的SSM,其通过输入依赖的方式来调整SSM中的参数,允许模型自适应的根据输入数据选择性的传输或遗忘信息,来提高模型在密集型数据上的计算效率。与此同时,Mixture of Experts(MoE)框架也显着改进了基于Transformer的LLM,如何设计更高效的MoE混合策略也成为了LLM研究领域中的潮流方向。

本文介绍一篇来自IDEAS NCBR和华沙大学合作完成的文章,本文作者探索了如何将SSM与MoE结合起来,提出了一种名为MoE-Mamba的框架,MoE-Mamba继承了SSM序列模型的递归计算特性,在推理速度方面相比传统Transformer具有天然优势,同时预测精度优于 Mamba 和 Transformer-MoE。特别的是,MoE-Mamba可以在减少训练steps的情况下达到与普通 Mamba 相同的性能

01. 引言

SSMs模型相比Transformer具有很多优势,例如可并行训练、推理时的线性时间复杂度以及在长上下文任务上的依赖捕获能力。特别是近期提出的Mamba模型[1],基于选择性的SSM和硬件感知设计在多种语言理解任务上取得了优异的结果,被学术界广泛认为是下一个替代注意力Transformer结构的有力竞争者。Mamba对GPU显存的占用不依赖于上下文长度,因为其反向传播所需的中间状态不会被保存,而是在反向传播期间重新计算,强调了状态压缩的重要性。此外,专家混合模型MoE[2]被证明可以有效扩展和提升Transformer模型的性能,其可以大幅增加模型的参数数量,而不会对模型推理和训练所需的 FLOP 产生太大影响,例如近期开源的Mixtral8×7B [3],性能与LLaMa-2 70B相当,但是推理计算量仅为后者的1/6。

4d3db7d34a9f434ebf3abfe5e52080bb.png

本文引入了一种将Mamba与MoE层相结合的模型MoE-Mamba,MoE-Mamba实现了a+b>c的效果,上图展示了MoE-Mamba与其他baseline方法的性能对比效果,可以看到,MoE-Mamba可以在普通Mamba的基础上实现对模型训练步骤缩减的效果。如上图黑色虚线所示,MoE-Mamba在减少2.2倍训练steps的情况下达到了与普通Mamba相同的性能。后续的其他实验也表明,MoE-Mamba拥有大规模扩展模型参数规模的潜力

02. 本文方法

尽管 Mamba 的主要底层机制与 Transformer 中使用的注意力机制有很大不同,但 Mamba 仍然保留了 Transformer 模型的层次结构(即块叠加)。例如包含一层或多层的相同块依次堆叠,每一层的输出会被汇聚到残差信息流中再送入到下一个块中,残差流的最终状态随后被用于预测语言建模任务中的下一个token。下图展示了这些架构的细节对比,从左到右分别是vanilla Transformer、MoE-Transformer、Mamba、MoE-Mamba。

39316c309a36437cb2d00ccfbb5e5475.png

本文提出的MoE-Mamba充分利用了前两种架构的兼容性,例如,在原有Mamba结构的基础上仿照MoE-Transformer将两个mamba块中的其中一个替换成一个可选择的MoE块。这种将mamba层与MoE交错设置的模式可以有效地将序列的整个上下文集成到mamba块的内部表示中,从而将其与MoE层的条件处理分开。

b19196ff06eb4a16afb52ec48d98a517.png

此外,本文作者认为如果将Mamba块和MoE块在局部层的范围内进行并行执行也是一个非常有前景的改进方向,如上图左侧展示了一种并行的Mamba+MoE 架构,右侧展示了Mamba Block的构成。如果将Mamba Block中的输出投影也替换为MoE,模型可以选择更少的模块来匹配当前输入计算的需要,也能实现与原始Mamba架构相当的效果。当然,也可以进一步将MoE替换Conv Projection层来进一步减少计算量。

03. 实验效果

在本文的实验部分,作者比较了5种不同的设置:vanilla Transformer、Mamba、Mamba-MLP、MoE 和 MoE-Mamba。为了保证 Mamba 和本文MoE-Mamba模型中每个token的活动参数数量大致相同,作者将每个MoE前馈层的参数量进行了缩减。不包括嵌入层和非嵌入层,所有模型的每个 token 大约需要访问 26M 个参数,训练数据集使用C4,整体的训练量为大约6.5B个token和10万个训练steps。

4abaf58c60e6438a8b3019c786c358e1.png

上表展示了上述几种对比模型的训练效果,可以看到,MoE-Mamba 比普通 Mamba 模型有了显着的改进。值得注意的是,MoE-Mamba 只需 46% 的训练steps即可达到与 vanilla Mamba 相同的性能

38c3505059b24e9aa01b89eacc894728.png

MoE中的专家数量是MoE-Mamba中的一个重要超参数,为了评估Mamba能否随着专家数量的增加而扩展,作者在下图绘制了模型在不同专家数量情况下的运行情况,并且加入了Mamba 和 Mamba-MLP(后者相当于具有单个专家的 MoE-Mamba)作为参考。上表展示了模型在10万训练steps之后的结果,结果表明,MoE-Mamba可以很好的适应专家数量的变化,如果专家数量设置为8或超过8,MoE-Mamba可以获得比普通Mamba模型更好的最终性能

5dcdcb5239e04e78aac141a8506854b1.png

04. 总结

本文提出了一种将专家混合MoE技术与Mamba架构进行集成的模块,即MoE-Mamba。基于并行计算的天然优势,Mamba减轻了大模型中复杂循环顺序性质的影响,并且对硬件进行感知来实现参数扩展。Mamba相比普通注意力机制Transformer解决了序列模型中效率和有效性之间的基本权衡,强调了状态压缩的重要性。将Mamba与高度稀疏的MoE前馈层交错设置可以实现更高推理效率的LLM,但目前的组合方式仍然非常简单,作者也探索了一种局部并行的Mamba+MoE架构以实现更高的预测准确率和更稀疏的推理效果。期望后续有更多基于条件计算与状态空间模型技术相结合的技术出现,作者认为这条道路将能够更有效地扩展到更大的语言模型中。

参考

[1] Gu A, Dao T. Mamba: Linear-time sequence modeling with selective state spaces[J]. arXiv preprint arXiv:2312.00752, 2023.
[2] Sanseviero, O., Tunstall, L., Schmid, P., Mangrulkar, S., Belkada, Y., and Cuenca, P. Mixture of experts explained, 2023. URL https://huggingface.co/blog/moe.

[3] Mistral. Mixtral of experts, Dec 2023. URL https://mistral.ai/news/mixtral-of-experts/.


  关于TechBeat人工智能社区

TechBeat(www.techbeat.net)隶属于将门创投,是一个荟聚全球华人AI精英的成长社区。

我们希望为AI人才打造更专业的服务和体验,加速并陪伴其学习成长。

期待这里可以成为你学习AI前沿知识的高地,分享自己最新工作的沃土,在AI进阶之路上的升级打怪的根据地!

更多详细介绍>>TechBeat,一个荟聚全球华人AI精英的学习成长社区 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1482762.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

腾讯云优惠代金券领取的3个渠道入口,不看后悔!

腾讯云代金券领取渠道有哪些?腾讯云官网可以领取、官方媒体账号可以领取代金券、完成任务可以领取代金券,大家也可以在腾讯云百科蹲守代金券,因为腾讯云代金券领取渠道比较分散,腾讯云百科txybk.com专注汇总优惠代金券领取页面&am…

华为数通方向HCIP-DataCom H12-821题库(多选题:01-20)

第01题 如图BGP下有如下配置,下面哪些描述是错误的? [HUAWEI-bgp] timer keepalive 30 hold 90 [HUAWEI-bgp] peer 1.1.1.2 timer keepalive 10 hold 30A、Timer 取最小值,所以最终结果是 peer1.1.1.2 的 timer值取 keepalive 10 hold 30 B、Peer 配置优先,所以最终结果是…

【Maven】Maven 基础教程(三):build、profile

《Maven 基础教程》系列,包含以下 3 篇文章: Maven 基础教程(一):基础介绍、开发环境配置Maven 基础教程(二):Maven 的使用Maven 基础教程(三):b…

开源视频转码器HandBrake

什么是 HandBrake ? HandBrake 是一款适用于 Linux、Mac 和 Windows的开源视频转码器。HandBrake 可以处理大多数常见的视频文件和格式,包括消费者和专业摄像机创建的文件、手机和平板电脑等移动设备的文件、游戏和计算机屏幕录制的文件,以及…

【数据结构】实现栈

大家好,我是苏貝,本篇博客带大家了解栈,如果你觉得我写的还不错的话,可以给我一个赞👍吗,感谢❤️ 目录 一 .栈的概念及结构二 .栈的实现栈的结构体初始化销毁栈顶插入栈顶删除显示栈顶元素是否为空栈的大…

Android 签名机制

V1是内部文件单个签 但是增加apk文件目录下面随意增加文件并不会有影响,它只关心meta-info文件 mf汇总清单的各个文件sha256 V2 整个APK文件,按文件进行hash 那么便不能随便在这里面增加文件了,增加了签名分块(不然签名信息存哪里)这里涉及一个文件概念 …

记录一次架构优化处理性能从3千->3万

0.背景 优化Kafka消费入Es,适配600台设备上报数据,吞吐量到达2万每秒 1.环境配置 2.压测工具 3.未优化之前的消费逻辑 4.优化之后的消费流程 5.多线程多ESclient 6.修改ES配置,增加kafka分区,增加线程,提升吞吐量 7.…

DiskMirror-spring-boot-starter 技术|

DiskMirror-spring-boot-starter 技术 diskMirror 实现了 SpringBoot 的 starter 能够集成到 SpringBoot 中。 DiskMirror 的 starter,通过引入此类,可以直接实现 diskMirror 在 SpringBoot 中的自动配置,接下来我们将使用案例逐步的演示 d…

【多线程】CAS详解

目录 🌴什么是 CAS🌸CAS 伪代码 🎍CAS 是怎么实现的🍀CAS 有哪些应⽤🌸实现原子类🌸实现自旋锁 🌳CAS 的 ABA 问题🌸**什么是 ABA 问题**?🌸ABA 问题引来的 B…

挑战30天学完Python:Day24 统计分析

🎉 本系列为Python基础学习,原稿来源于 30-Days-Of-Python 英文项目,大奇主要是对其本地化翻译、逐条验证和补充,想通过30天完成正儿八经的系统化实践。此系列适合零基础同学,或仅了解Python一点知识,但又没…

Docker之数据卷

文章目录 一、什么是数据卷二、自定义镜像 一、什么是数据卷 1.1Docker 数据管理 在生产环境中使用 Docker ,往往需要对数据进行持久化,或者需要在多个容器之间进行 数据共享,这必然涉及容器的数据管理操作 1.2操作 将宿主机的目录与容器的目…

【解决(几乎)任何机器学习问题】:交叉验证

在上⼀章中,我们没有建⽴任何模型。原因很简单,在创建任何⼀种机器学习模型之前,我们必须知道什么是交叉检验,以及如何根据数据集选择最佳交叉检验数据集。 那么,什么是 交叉检验 ,我们为什么要关注它&…

交友社交软件开发-php交友聊天系统-

为了开发一个高效的交友系统,需要一个完善的信息管理和筛选机制。这个系统应该能够根据用户的个人信息、兴趣爱好、价值观等标准进行筛选,并向用户提供符合他们要求心仪的人的信息。为了实现这个目标,系统可以利用人工智能技术,分…

Docker使用数据卷自定义镜像Dockerfile

文章目录 一、数据卷二、Dockerfile自定义centos 一、数据卷 数据卷(Data Volumes)是一个可供一个或多个容器使用的特殊目录,它将主机操作系统目录直接映射进容器,它可以提供很多有用的特性: 1.数据卷 可以在容器之间共享和重用 2.对数据卷的…

Python调用ChatGPT API使用国内中转key 修改接口教程

大家好,我是淘小白~ 有的客户使用4.0的apikey ,直接使用官方直连的apikey消费很高,有一位客户一个月要消费2万,想使用4.0中转的apikey,使用中转的apikey 需要修改官方的openai库,下面具体说下。 1、首先确保安装的op…

1209. 带分数 刷题笔记

思路 暴力匹配 读入目标数 n 看n是否与ab/c相等 因为c里面的除法是整除 我们将 nab/c 转换为 c*na*cb 那么如何获得a,b,c 依题意 a,b,c三个数由1-9九个数字组成 且每个数字只能出现一次 由此 我们可以搜出123456789的全部排列方式…

I/O:标准IO(二)

一、标准IO操作函数 1.fgets、fputs int fputs(const char *s, FILE *stream); 功能描述:将字符串s写入stream指向的文件中 返回数:成功写入文件中数据的字节数 int puts(const char* s) 功能描述:将字符串s写入终端; 返回值&…

mysql数据库操作小寄巧

目录 json字段查询时间相关只有日期只有时间又有时间又有日期时间比较时间运算 某字段同的取最新数据(软性的新数据覆盖旧数据查找)sql_modeonly_full_group_by的解决办法优化思路 json字段查询 查询某个json字段(xx)的某个属性下…

kafka架构详解

文章目录 概述kafaka架构Kafka的设计时什么样的Zookeeper 在 Kafka 中的作用 概述 Apache Kafka 是分布式发布 - 订阅消息系统,在 kafka 官网上对 kafka 的定义:一个分布式发布 - 订阅消息传递系统。 Kafka 最初由 LinkedIn 公司开发,Linked…

2024.03.02 homework math

2024.03.02 homework math 1:路程问题,等量关系,全程的路程。 2:路程问题,等量关系,全程总时间