文献速递:帕金森的疾病分享--多模态机器学习预测帕金森病

news2024/11/16 20:36:07

文献速递:帕金森的疾病分享–多模态机器学习预测帕金森病

Title

题目

Multi-modality machine learning predicting Parkinson’s disease

多模态机器学习预测帕金森病

01

文献速递介绍

对于渐进性神经退行性疾病,早期和准确的诊断是有效开发和使用新干预措施的关键。这种早期检测范式旨在在患者认识到症状和体征之前,当疾病过程最容易接受干预时,识别、分析并防止或管理疾病。

这里我们描述的工作通过数据驱动的方式使用成本效益高的方法促进准确和早期诊断。这份报告还描述了在促进生产规模分析多模态基因组和临床数据的背景下,应用一个开源自动机器学习(ML),GenoML,的情况。

国家人类基因组研究所发布的最新战略愿景声明,到2030年,表观遗传学和转录组学的特征将常规地纳入到基因型对表型影响的预测模型中。生物医学研究人员目前正处于两项科学进展的交汇点,这将促进早期检测和远程识别潜在高风险个体:首先,大量临床、人口统计和遗传/基因组数据集的可用性;其次,机器学习(ML)流程自动化和人工智能的进展,以最大化利用这些大量的、容易获得的数据的价值。

首次就诊时的正确临床诊断,只有80%在病理学上确认为帕金森病(PD)。以前的生物标志物研究,特别是在神经退行性疾病中,主要关注广为人知的统计方法和线性模型,使用单一指标或少数几个指标进行预测。在过去几年中,多项研究使用ML探索了不同的模态,如CSF生物标志物、成像、RNA或包括与运动相关的指标,甚至可穿戴传感器数据。虽然这些努力在分类上表现良好,但我们寻求基于相对低成本且容易获得的数据构建模型。

Results

结果

We have shown that integrating multiple modalities improved model performance in predicting PD diagnosis in a mixed population of cases and controls. For a summary of basic clinical and demographic features, please refer to Table 1 and for a summary of the analysis, please refer to Fig. 1. Additional information in regards to cohorts and interpretation for ML metrics and models are included in Supplementary Notes 2, 3. Our multi-modality model showed a higher area under the curve (AUC;89.72%) than just the clinico-demographic data available prior to neurological assessment (87.52%), the genetics-only model from genome sequencing data and polygenic risk score (PRS; 70.66%), or the transcriptomics-only model from genome-wide whole blood RNA sequencing data (79.73%) in withheld PPMI samples(see Table 2 and Fig. 2 for summaries). This model’s performance improved after tuning, described below and in Table 3, where the mean AUC metric in the untuned model in PPMI is 80.75 with a standard deviation of 8.84 (range = 69.44–88.51) and the mean AUC at tuning in PPMI is 82.17 with a standard deviation of 8.96 (range = 70.93–90.17). Similar improvements can be seen when this model is validated in the PDBP dataset (AUC from the combined modality model at 83.84% before tuning) detailed in Table 4 and Fig. 3. Additionally, the multimodal model also had the lowest false positive and false negative rates compared to other models, only focusing on a single modality, in both the withheld test set in PPMI and in the PDBP validation set. Thus, moving from single to multiple data modalities yielded better results in not only AUC but across all performance metrics

结合多种模态的预测超越了基于单一模态的预测

我们已经展示了,将多种模态整合在一起可以提高模型在混合病例和对照组人群中预测PD诊断的性能。关于基本临床和人口统计特征的摘要,请参见表1,关于分析的摘要,请参见图1。关于队列和解释ML指标及模型的附加信息包含在补充说明2、3中。我们的多模态模型显示出的曲线下面积(AUC;89.72%)高于仅有的临床-人口统计数据(在神经学评估之前可获得的数据;87.52%)、仅基因组测序数据和多基因风险评分(PRS;70.66%)的遗传学模型,或仅来自全基因组全血RNA测序数据的转录组学模型(79.73%)在保留的PPMI样本中(见表2和图2以获取摘要)。在调整后,此模型的性能得到改善,如下所述及表3中,未调整模型在PPMI的平均AUC指标为80.75,标准差为8.84(范围=69.44–88.51),而在PPMI调整后的平均AUC为82.17,标准差为8.96(范围=70.93–90.17)。当这个模型在PDBP数据集中得到验证时,可以看到类似的改进(调整前结合模态模型的AUC为83.84%),详细内容见表4和图3。此外,与其他仅关注单一模态的模型相比,多模态模型在保留的PPMI测试集和PDBP验证集中都具有最低的假阳性和假阴性率。因此,从单一数据模态转向多种数据模态不仅在AUC上,而且在所有性能指标上都取得了更好的结果。

Fig

图片

Fig. 1 Workflow and Data Summary. Scientific notation in the workflow diagram denotes minimum p values from reference GWAS or differential expression studies as a pre-screen for feature inclusion. Blue indicates subsets of genetics data (also denoted as “G”), green indicates subsets of transcriptomics data (also denoted as *omics or “O”), yellow indicates clinico-demographic data (also denoted as C + D),and purple indicates combined data modalities. PD Parkinson’s disease, AMP-PD accelerating medicines partnership in Parkinson’s disease, PPMI Parkinson’s progression marker initiative, PDBP Parkinson’s disease biomarker program, WGS whole-genome sequencing, GWAS genome-wide association study, QC quality control, MAF minor allele frequency, PRS polygenic risk score.

图1 工作流程和数据摘要。工作流程图中的科学记号表示来自参考GWAS或差异表达研究的最小p值,作为特征包含的预筛选。蓝色表示遗传数据子集(也标记为“G”),绿色表示转录组数据子集(也标记为*组学或“O”),黄色表示临床-人口统计数据(也标记为C + D),紫色表示结合了数据模态。PD帕金森病,AMP-PD加速医药合作伙伴关系帕金森病项目,PPMI帕金森病进展标志物计划,PDBP帕金森病生物标志物计划,WGS全基因组测序,GWAS全基因组关联研究,QC质量控制,MAF小等位基因频率,PRS多基因风险评分。

图片

Fig. 2Receiver operating characteristic curves and case probability density plots in withheld training samples at default thresholds comparing performance metrics in different data modalities from the PPMI dataset. P values mentioned indicate the threshold of

significance used per datatype, except for the inclusion of all clinico-demographic features. a PPMI combined *omics dataset (genetics p value threshold = 1E-5, transcriptomics p value threshold = 1E-2, and clinico-demographic information); b PPMI genetics-only dataset (p value threshold = 1E-5); c PPMI clinico-demographics only dataset; d PPMI transcriptomics-only dataset (p value threshold = 1E-2). Note that x-axis limits may vary as some models produce less extreme probability distributions than others inherently based on fit to the input data and the algorithm used, further detailed images are included in Supplementary Fig. 5. PPMI Parkinson’s progression marker initiative, ROC receiver operating characteristic curve.

图2 在默认阈值下,比较PPMI数据集中不同数据模态的性能指标,保留训练样本中的接收器操作特征曲线和案例概率密度图。提到的P值表示每种数据类型使用的显著性阈值,除了包含所有临床-人口统计特征外。a PPMI综合*组学数据集(遗传学P值阈值=1E-5,转录组学P值阈值=1E-2,以及临床-人口统计信息);b PPMI仅遗传学数据集(P值阈值=1E-5);c PPMI仅临床-人口统计数据集;d PPMI仅转录组学数据集(P值阈值=1E-2)。请注意,x轴的限制可能会有所不同,因为一些模型基于对输入数据的适应度和使用的算法,天生就会产生比其他模型更不极端的概率分布,更详细的图像包含在补充图5中。PPMI帕金森病进展标志物计划,ROC接收器操作特征曲线。

图片

Fig. 3Receiver operating characteristic and case probability density plots in the external dataset (PDBP) at validation for the trained and then tuned models at default thresholds. Probabilities are predicted case status (r1), so controls (status of 0) skews towards more samples on the left, and positive PD cases (status of 1) skews more samples on the right. a Testing in PDBP the combined *omics model (genetics p value threshold = 1E-5, transcriptomics p value threshold = 1E-2, and clinico-demographic information) developed in PPMI prior to tuning the hyperparameters of the model; b Testing in PDBP the combined *omics model (genetics p value threshold = 1E-5, transcriptomics p value threshold = 1E-2, and clinico-demographic information) developed in PPMI after tuning the hyperparameters of the model. PPMI Parkinson’s progression marker initiative, PDBP Parkinson’s disease biomarker program, ROC receiver operating characteristic curve.

图3在外部数据集(PDBP)上对训练并调整后的模型进行验证时的接收器操作特征和案例概率密度图,使用默认阈值。概率预测的是案例状态(r1),因此对照组(状态为0)的样本偏向左侧,阳性PD案例(状态为1)的样本偏向右侧。a 在PDBP测试结合组学模型(遗传学P值阈值=1E-5,转录组学P值阈值=1E-2,以及临床-人口统计信息),该模型在PPMI中开发,在调整模型的超参数之前;b 在PDBP测试结合组学模型(遗传学P值阈值=1E-5,转录组学P值阈值=1E-2,以及临床-人口统计信息),该模型在PPMI中开发,调整模型的超参数之后。PPMI帕金森病进展标志物计划,PDBP帕金森病生物标志物项目,ROC接收器操作特征曲线。

图片

Fig. 4Feature importance plots for top 5% of features in data. The plot on the left has lower values indicated by the color blue, while higher values are indicated in red compared to the baseline risk estimate. Plot on the right indicates directionality, with features predicting for cases indicated in red, while features better-predicting controls are indicated in blue. SHAP Shapley values, UPSIT University of Pennsylvania smell identification test, PRS polygenic risk score.

图4数据中前5%特征的特征重要性图。左侧的图中,较低的值用蓝色表示,而较高的值与基线风险估计相比用红色表示。右侧的图表明方向性,预测案例的特征用红色表示,而更好地预测对照组的特征用蓝色表示。SHAP沙普利值,UPSIT宾夕法尼亚大学嗅觉识别测试,PRS多基因风险评分。

Table

图片

Table 1.Descriptive statistics of studies included from AMP PD.

表1.包含自AMP PD的研究的描述性统计。

图片

Table 2.Performance metric summaries comparing training in withheld samples in PPMI.

表2.比较在PPMI中保留样本训练的性能指标摘要。

图片

Table 3.Performance metric summaries comparing at tuned cross-validation in withheld samples in PPMI.

表3.比较在PPMI中保留样本的调整后交叉验证的性能指标摘要。

图片

Table 4.Performance metric summaries comparing combined tuned and untuned model performance on PDBP validation dataset.

表4.比较在PDBP验证数据集上结合调整和未调整模型性能的性能指标摘要。

图片

Table 5.Optimizing the AUC threshold in withheld training samples and in the validation data.

表5.在保留的训练样本和验证数据中优化AUC阈值

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1480719.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Stable Diffusion 模型分享:GalaxyTimeMachines GTM ForYou-Fantasy(幻想)

本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八 下载地址 模型介绍 作者述:这个“幻想”模型比这个系列的照片模型有更多的风格和颜色。如果推动的…

云渲染的使用:效果图渲染要多久!

随着技术的不断进步,云渲染服务已经成为效果图制作过程中划时代的解决方案。通过该服务,3D艺术家和渲染师现在可以在云端完成资源密集型的渲染任务,这大大节省了本地计算资源。但许多人可能会好奇,使用云渲染服务渲染一张效果图究…

RTE 开源|小红书 REDPlayer 正式发布!快来 get 同款播放器~

本项目由 RTE 开发者社区 x 小红书 联合运营 播放器最初出现在 19 世纪,当时主要用于播放音频,例如通过留声机播放唱片。 随着技术的进步,音频播放器不断改进,品质越来越好,体积也越来越小。到了今天,通过…

投标中excel表格常用功能梳理

投标中excel表格常用功能梳理: 1.投标报价调整报价的办法: 目的调整报价,把“红框”的报价增加30%,50% 增加30%的步骤: 步骤1:选择1.3 复制(ctrlc) 步骤2:选择性黏贴 …

React之数据绑定以及表单处理

一、表单元素 像<input>、<textarea>、<option>这样的表单元素不同于其他元素&#xff0c;因为他们可以通过用户交互发生变化。这些元素提供的界面使响应用户交互的表单数据处理更加容易 交互属性&#xff0c;用户对一下元素交互时通过onChange回调函数来监听…

SpringBoot底层原理

SpringBoot底层原理 一 配置优先级 1.配置方式 Springboot中支持三种配置方式&#xff0c;分别为&#xff1a; application.propertiesapplication.ymlapplication.yaml 2.配置优先级 当存在多份配置文件时&#xff0c;配置文件会按照它们的优先级生效。 优先级从高到底…

一文带你了解MySQL之B+树索引的原理

前言 学完前面我们讲解了InnoDB数据页的7个组成部分&#xff0c;知道了各个数据页可以组成一个双向链表&#xff0c;而每个数据页中的记录会按照主键值从小到大的顺序组成一个单向链表&#xff0c;每个数据页都会为存储在它里边儿的记录生成一个页目录&#xff0c;在通过主键查…

docker mysql主从复制

新建主服务器容器实例3301 mysql 主 3301 docker run -p 3301:3306 --name mysql-master \ -v /mydata/mysql-master/log:/var/log/mysql \ -v /mydata/mysql-master/data:/var/lib/mysql \ -v /mydata/mysql-master/conf:/etc/mysql \ -v /home/mysql/mysql-files:/var/lib/…

什么是前端框架中的数据绑定(data binding)?有哪些类型的数据绑定?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

鸿蒙Harmony应用开发—ArkTS声明式开发(通用属性:边框设置)

设置组件边框样式。 说明&#xff1a; 从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 border border(value: BorderOptions) 设置边框样式。 卡片能力&#xff1a; 从API version 9开始&#xff0c;该接口支持在ArkTS卡…

怎样选择一家可靠的代理IP服务?

在数字化时代&#xff0c;随着网络安全和数据隐私的日益重要&#xff0c;代理IP服务已经成为个人用户和企业保护网络身份、实现数据加密和访问地理限制内容的重要工具。然而&#xff0c;面对市场上众多的代理IP服务提供商&#xff0c;如何选择一家可靠的代理IP服务提供商也成为…

【JavaScript 漫游】【026】进度事件简记

文章简介 本篇文章为【JavaScript 漫游】专栏第 025 篇文章&#xff0c;简单记录了进度事件的知识点。 进度事件的种类 进度事件用来描述资源加载的进度&#xff0c;主要由 AJAX 请求、<img>、<audio>、<video>、<style>、<link> 等外部资源的…

如何知道当前ubuntu的版本

查看版本&#xff1a; cat /etc/lsb-release 查看内核&#xff1a; uname -a

[AutoSar]BSW_Com07 CAN报文接收流程的函数调用

目录 关键词平台说明一、背景二、顺序总览三、函数说明3.1 Com_RxIndication&#xff08;&#xff09; 关键词 嵌入式、C语言、autosar、OS、BSW 平台说明 项目ValueOSautosar OSautosar厂商vector &#xff0c;芯片厂商TI 英飞凌编程语言C&#xff0c;C编译器HighTec (GCC)…

鸿蒙Harmony应用开发—ArkTS声明式开发(通用属性:布局约束)

通过组件的宽高比和显示优先级约束组件显示效果。 说明&#xff1a; 从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 aspectRatio aspectRatio(value: number) 指定当前组件的宽高比。 卡片能力&#xff1a; 从API vers…

本地navicate连接vm虚拟机中的mysql5.7docker容器

一&#xff0c;配置 前提是我已经启动的mysql5.7容器 使用 docker ps -a 查看所有的容器 使用 docker exec -it c4f9 bash 进入mysql命令行&#xff0c;注意这个c4f9是容器唯一id&#xff0c;不用写全连接mysql mysql -uroot -p123456&#xff0c;连接成功后 输入 show datab…

JOSEF约瑟 FHP-33Q/4跳位、合位、电源监视综合控制继电器 凸出式板前接线 0.1-10S

FHP-33系列跳位、合位、电源监视综合控制继电器系列型号&#xff1a;FHP-33A/1跳位、合位、电源监视综合控制继电器&#xff1b;FHP-33A/2跳位、合位、电源监视综合控制继电器&#xff1b;FHP-33A/3跳位、合位、电源监视综合控制继电器&#xff1b;FHP-33A/4跳位、合位、电源监…

3/1作业

1.用fwrite和fread将任意bmp图片&#xff0c;修改成德国的国旗 #include <stdio.h> #include <string.h> #include <unistd.h> #include <stdlib.h> int main(int argc, const char *argv[]) { FILE* fp fopen("1.bmp","r")…

传输线与反射(六)

只要信号遇到瞬时阻抗突变&#xff0c;就会发生反射。反射信号的量值由瞬时阻抗的变化量决定&#xff0c;将反射电压与入射电压的比值称为反射系数&#xff0c;可以用如下公式计算&#xff1a; 反射是造成单一线网络中所有信号质量的问题根源。为减小影响&#xff0c;需要做到以…

海豚调度DolphinScheduler入门学习

DS简介&#xff1a; DolphinScheduler 是一款分布式的、易扩展的、高可用的数据处理平台&#xff0c;主要包含调度中心、元数据管理、任务编排、任务调度、任务执行和告警等模块。其技术架构基于 Spring Boot 和 Spring Cloud 技术栈&#xff0c;采用了分布式锁、分布式任务队列…