【探索AI】十二 深度学习之第2周:深度神经网络(一)深度神经网络的结构与设计

news2024/10/6 22:24:42

第2周:深度神经网络

将从以下几个部分开始学习,第1周的概述有需要详细讲解的的同学自行百度;

深度神经网络的结构与设计
深度学习的参数初始化策略
过拟合与正则化技术
批标准化与Dropout
实践:使用深度学习框架构建简单的深度神经网络,并进行训练与评估

(一)深度神经网络的结构与设计

一. 神经网络基础回顾

在这里插入图片描述

二. 深度神经网络结构

  1. 深度网络
    引入深度概念:

深度神经网络由多个隐藏层组成,可以进行多层次的特征抽取和表示学习。
随着层数增加,网络可以学习到更加抽象和复杂的特征。

层与层之间的连接方式:

全连接:每个神经元都与上一层的所有神经元相连,参数量大。
卷积连接:通过卷积操作提取局部特征,共享权重减少参数量。
池化操作:减少特征图大小、参数量,保留关键信息。

  1. 常见结构
    卷积神经网络(CNN):

适用于图像数据处理:通过卷积层和池化层提取空间特征。
包括卷积层、池化层、全连接层等,常用于图像分类、目标检测等任务。

循环神经网络(RNN):

适用于序列数据处理:具有记忆功能,能处理不定长序列数据。
可以捕捉序列中的时间依赖关系,常用于自然语言处理、时间序列预测等领域。

注意力机制(Attention):

用于处理不定长序列数据:允许模型在不同时间步关注输入序列的不同部分。
提高模型对长序列的处理能力,常用于机器翻译、语音识别等任务。

三. 神经网络设计与调参

  1. 网络设计要点
    深度与宽度的选择:

深度:增加深度可提高网络表达能力,但也增加训练难度和计算成本。根据任务复杂度和数据量进行选择。
宽度:每层神经元数量的选择影响网络的表示能力,通常在实践中会通过试验选择最佳宽度。

正则化与批标准化的使用:

正则化:如L1/L2正则化、Dropout等可以减少过拟合问题。
批标准化:减少内部协变量偏移,加速训练过程,提高模型泛化能力。
梯度消失与爆炸问题的处理:

梯度消失:通过使用恰当的激活函数(如ReLU)、初始化权重(如He初始化)、或者使用残差连接(如ResNet)来缓解。
梯度爆炸:梯度裁剪、合适的权重初始化(如Xavier初始化)等方法可以解决。

  1. 超参数调优
    学习率、批大小、激活函数的选择:

学习率:影响模型收敛速度和性能,可以采用学习率衰减策略。
批大小:影响梯度更新频率和内存占用,选择适当大小有助于加快训练。
激活函数:根据任务需求选择适当的激活函数。

交叉验证、网格搜索等调参方法:

交叉验证:评估模型泛化能力,选择最佳超参数组合。
网格搜索:通过遍历不同超参数组合来寻找最优模型配置。

四. 实践与案例分析

  1. 实践项目:文本情感分类
    项目描述:

任务:对电影评论进行情感分类,判断评论是正面还是负面情感。
数据集:使用IMDb数据集,包含大量电影评论和对应情感标签。
模型:使用卷积神经网络(CNN)进行文本分类。
设计过程:

数据预处理:文本分词、构建词典,将文本转换为词向量表示。
搭建CNN模型:包括卷积层、池化层和全连接层。
模型训练:选择合适的损失函数(如交叉熵损失)、优化器(如Adam)、正则化方法(如Dropout)进行训练。

代码示例:

数据预处理:

# 文本分词及构建词典
tokenizer = Tokenizer(num_words=max_words)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
word_index = tokenizer.word_index

# 将文本转换为词向量表示
data = pad_sequences(sequences, maxlen=maxlen)
labels = np.asarray(labels)

搭建CNN模型:

model = Sequential()
model.add(Embedding(max_words, embedding_dim, input_length=maxlen))
model.add(Conv1D(filters, kernel_size, activation='relu'))
model.add(GlobalMaxPooling1D())
model.add(Dense(hidden_dim, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

模型训练:

model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_val, y_val))

  1. 案例分析:AlphaGo
    案例描述:
    任务:围棋对弈。
    网络结构:使用深度残差网络(ResNet)和卷积神经网络(CNN)。
    调参策略:
    网络结构设计:采用深度残差网络和CNN结构,利用残差连接减少梯度消失问题。
    强化学习算法:采用蒙特卡洛树搜索(Monte Carlo Tree Search, MCTS),结合策略价值网络进行决策。
    自我对弈:通过大量自我对弈生成数据,用于训练深度神经网络模型。

代码示例:
网络结构设计:

# 深度残差网络(ResNet)部分
def residual_block(input_tensor, filters, kernel_size):
    x = Conv2D(filters, kernel_size, padding='same')(input_tensor)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Conv2D(filters, kernel_size, padding='same')(x)
    x = BatchNormalization()(x)
    x = Add()([x, input_tensor])
    x = Activation('relu')(x)
    return x

# 卷积神经网络(CNN)部分
def convolutional_block(input_tensor, filters, kernel_size):
    x = Conv2D(filters, kernel_size, padding='same')(input_tensor)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    return x

强化学习算法(蒙特卡洛树搜索):

def monte_carlo_tree_search(game_state):
    root_node = Node(state=game_state)
    
    for i in range(num_simulations):
        node = root_node
        while not node.is_leaf():
            node = node.select_child()
        
        if node.visits > 0:
            action = node.get_best_action()
        else:
            action = random.choice(game_state.get_legal_actions())
        
        new_state = game_state.play_action(action)
        reward = simulate(new_state)
        
        node.update(reward)
    
    return root_node.get_best_action()

自我对弈:

def self_play():
    game_state = initialize_game_state()
    
    while not game_state.is_terminal():
        action = monte_carlo_tree_search(game_state)
        game_state = game_state.play_action(action)
    
    final_reward = calculate_reward(game_state)
    return final_reward

五.总结与展望

  1. 总结:
    深度神经网络的结构与设计要点:
    神经网络结构:包括输入层、隐藏层和输出层,隐藏层可以是卷积层、循环层或全连接层等。
    激活函数:用于引入非线性因素,常见的激活函数有ReLU、Sigmoid和Tanh等。
    损失函数:用于衡量模型预测输出与实际标签之间的差异,常见的损失函数有交叉熵损失和均方误差等。
    优化器:用于调整模型参数以最小化损失函数,常见的优化器有SGD、Adam和RMSprop等。
    正则化:包括L1正则化、L2正则化和Dropout等方法,用于防止过拟合。

  2. 展望:
    深度学习领域的发展趋势与挑战:
    自动化与自适应性:未来深度学习模型将更加自动化和自适应,能够适应不同任务和数据的特点。
    多模态融合:深度学习将更多地涉及多模态数据(文本、图像、语音等)的融合与处理。
    可解释性:解释深度学习模型决策的可解释性将成为重要研究方向,以提高模型的可信度和应用范围。
    边缘计算:将深度学习模型部署到边缘设备上,实现智能化的边缘计算应用。
    数据隐私与安全:在深度学习中注重数据隐私保护和模型安全性,是未来发展的重要挑战

声明:本人的深度学习相关文章全部来自于与AI 的对话整理汇总(学习笔记整理),仅作用于共同学习,不做他用;
持续汇总,持续学习中。。。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1479757.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

奇安信发布《2024人工智能安全报告》,AI深度伪造欺诈激增30倍

2024年2月29日,奇安信集团对外发布《2024人工智能安全报告》(以下简称《报告》)。《报告》认为,人工智能技术的恶意使用将快速增长,在政治安全、网络安全、物理安全和军事安全等方面构成严重威胁。 《报告》揭示了基于…

为什么电池对eVTOL来说是一个问题

Electric Power Systems首席技术官Michael Armstrong表示,电动垂直起降(eVTOL)飞机面临着独特的电池挑战,这将要求开发人员改变他们对电池系统和电动汽车设计的看法。 阿姆斯特朗说:“如果我们研究先进空中交通、第23部…

iPhone上备忘录分享到微信 苹果手机备忘录微信分享

在繁忙的生活中,iPhone的备忘录功能一直是我记录琐事、灵感和待办事项的得力助手。然而,每当我精心编辑好一段内容,想要将其分享给微信好友或发到朋友圈时,却常常遭遇分享难题。那种无法将精彩瞬间轻松分享给朋友的无奈&#xff0…

易货模式微信小程序的可行性分析

随着移动互联网技术的快速发展,微信小程序作为一种轻量级的应用形态,已经成为众多创业者和服务提供者关注的焦点。微信小程序以其便捷的使用体验、较低的开发成本和广泛的用户基础,成为了各类业务模式的创新平台。在这样的背景下,…

如何将java程序打包成可执行文件

问题提出 当你写了一个很炫酷的java小游戏,你迫不及待想给朋友分享。然而,你发给朋友之后,他却表示无法执行。因为我们无法保证其他人的电脑上已经安装了java运行环境。 所以,我们有哪些方法把我们的炫酷代码分享给朋友呢&#…

基于SSM SpringBoot vue服装物流管理系统

基于SSM SpringBoot vue服装物流管理系统 系统功能 首页 图片轮播 人个中心 登录注册 后台管理: 登录注册 个人中心 货物信息管理 货物入库管理 订单信息管理 商品出库管理 快递追踪管理 用户管理 供应商信息管理 盘点信息管理 管理员管理 开发环境和技术 开发语言&#xf…

纯css实现-让字符串在文字少时显示为居中对齐,而在文字多时显示为左对齐

纯css实现-让字符串在文字少时显示为居中对齐,而在文字多时显示为左对齐 使用flex实现 思路 容器样式(.container): Flex容器的BFC性质使得其内部的子元素(.text-box)在水平方向上能够居中,通过justify-c…

Python web框架fastapi数据库操作ORM(一)

文章目录 Fastapi ORM操作1、创建模型2、创建数据库连接配置文件3、启动项目4、根据模型类创建数据库表1. 初始化配置,只需要使用一次2. 初始化数据库,一般情况下只用一次3. 更新模型并进行迁移4. 重新执行迁移,写入数据库5. 回到上一个版本6…

RFID射频识别技术的优势

目前RFID在金融支付、物流、零售、制造业、医疗、身份识别、防伪、资产管理、交通、食品、动物识别、汽车、等行业都已经实现不同程度的商业化使用。未来,RFID技术有不可替代的六大优势,也保证了物联网的万物互联的有序发展! 1、无需可视,在无…

第零章_计算机导论

0.1 计算机:辅助人脑的好工具 所谓的计算机就是一种计算器,而计算器其实是:『接受用户输入指令与数据,经由中央处理器的数学与逻辑单元运算处理后,以产生或储存成有用的信息』。因此,只要有输入设备(不管是键盘还是触摸…

【软考高项】【计算专题】- 5 - 进度类 - 横道图/甘特图

一、知识点 1、基本定义 甘特图(Gantt chart )又称为横道图、条状图(Bar chart),通过条状图来显示项目各活动的进 度情况。以提出者亨利劳伦斯甘特( Henry Laurence Gantt)先生的名字命名。 目前许多文档工具都可以画甘特图。 (1)我的举例 …

PSO-CNN-LSTM多输入回归预测|粒子群算法优化的卷积-长短期神经网络回归预测(Matlab)——附代码数据

目录 一、程序及算法内容介绍: 基本内容: 亮点与优势: 二、实际运行效果: 三、算法介绍: 四、完整程序数据分享下载: 一、程序及算法内容介绍: 基本内容: 本代码基于Matlab平台…

javaWeb个人学习04

AOP核心概念: 连接点: JoinPoint, 可以被AOP控制的方法 通知: Advice 指哪些重复的逻辑,也就是共性功能(最终体现为一个方法) 切入点: PointCut, 匹配连接点的条件,通知仅会在切入点方法执行时被应用 目标对象: Target, 通知所应用的对象 通知类…

内网穿透 nas/树莓派+ipv4服务器 (ipv6)

nas 1.有个服务器 2.有个nas https://github.com/snail007/goproxy/blob/master/README_ZH.md https://github.com/snail007/proxy_admin_free/blob/master/README_ZH.md 2个官网一个是程序,一个是网站 手册 https://snail007.host900.com/goproxy/manual/zh/#/?i…

JavaScript DOM操作笔记记录回忆总结

一、什么是DOM? 1、通过 HTML DOM,可访问 JavaScript HTML 文档的所有元素。 2、当网页被加载时,浏览器会创建页面的文档对象模型(Document Object Model) 二、操作DOM 1、在操作DOM之前,我们需要先获取到…

DolphinScheduler——奇富科技的调度实践

目录 一、技术架构 二、业务挑战 2.1 调度任务量大 2.2 运维复杂 2.3 SLA要求高 三、调度优化实践 3.1 重复调度 3.2 漏调度 3.3 Worker服务卡死 3.4 任务重复运行 四、服务监控 4.1 方法耗时监控 4.2 任务调度链路监控 五、用户收益 原文大佬的这篇调度系统案例…

图像分割 - 查找图像的轮廓(cv2.findContours函数)

1、前言 轮廓,是指图像中或者物体的外边缘线条。在简单的几何图形中,图形的轮廓是由平滑的线条构成,容易被识别。但不规则的图形或者生活中常见的物体轮廓复杂,识别起来比较困难 2、findContours函数 这里先介绍函数的参数,具体的含义会在下面实验中阐述 opencv 提供的轮…

(正规api接口代发布权限)短视频账号矩阵系统实现开发--技术全自动化saas营销链路生态

短视频账号矩阵系统实现开发--技术全自动化saas营销链路生态源头开发(本篇禁止抄袭复刻) 一、短视频矩阵系统开发者架构 云罗短视频矩阵系统saas化系统,开发层将在CAP原则基础上使用分布式架构,对此网站的整体架构采用了基于B/S三层架构模式…

计算机网络——21拥塞控制原理

拥塞控制原理 概述 拥塞 非正式的定义:“太多的数据需要网络传输,超过了网络的处理能力”与流量控制不同拥塞的表现 分组丢失(路由器缓冲区溢出)分组经历比较长时间的延迟(在路由器的队列中排队) 网络中…

第六十七天 APP攻防-Frida反证书抓包移动安全系统资产提取评估扫描

第67天 APP攻防-Frida反证书抓包&移动安全系统&资产提取&评估扫描 知识点: 1、资产提权-AppinfoScanner 2、评估框架-MobSF&mobexler 3、抓包利器-Frida&rOcapture 章节点: 1、信息收集-应用&资产提取&权限等 2、漏洞发现…