题目描述
给定一个非负整数 numRows
,生成「杨辉三角」的前 numRows
行。
示例 1:
输入: numRows = 5
输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
示例 2:
输入: numRows = 1
输出: [[1]]
提示:
1 <= numRows <= 30
方法一:数学
思路及解法
杨辉三角,是二项式系数在三角形中的一种几何排列。它是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合。
杨辉三角具有以下性质:
代码
/**
* Return an array of arrays of size *returnSize.
* The sizes of the arrays are returned as *returnColumnSizes array.
* Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().
*/
int** generate(int numRows, int* returnSize, int** returnColumnSizes) {
// Allocate memory for the 2D array to store Pascal's Triangle
int** ret = malloc(sizeof(int*) * numRows);
// Set the returnSize to the number of rows
*returnSize = numRows;
// Allocate memory for an array to store the size of each row in the triangle
*returnColumnSizes = malloc(sizeof(int) * numRows);
// Loop through each row of the triangle
for (int i = 0; i < numRows; ++i) {
// Allocate memory for the current row
ret[i] = malloc(sizeof(int) * (i + 1));
// Set the size of the current row in the returnColumnSizes array
(*returnColumnSizes)[i] = i + 1;
// Set the first and last element of the current row to 1
ret[i][0] = ret[i][i] = 1;
// Populate the rest of the elements in the current row based on the previous row
for (int j = 1; j < i; ++j) {
ret[i][j] = ret[i - 1][j] + ret[i - 1][j - 1];
}
}
// Return the generated Pascal's Triangle
return ret;
}
复杂度分析
时间复杂度:O(numRows^2)
。
空间复杂度:O(1)
。不考虑返回值的空间占用。
作者:力扣官方题解
链接:https://leetcode.cn/problems/pascals-triangle/solutions/510638/yang-hui-san-jiao-by-leetcode-solution-lew9/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。