遥感、航拍、影像等用于深度学习的数据集集合

news2025/2/23 11:50:12

遥感图像的纹理特征异常繁杂,地貌类型多变,人工提取往往存在特征提取困难和特征提取不准确的问题,同时,在这个过程中还会耗费海量的人力物力。随着计算力的突破、数据洪流的暴发和算法的不断创新,在具有鲜明“大数据”特征的自然资源领域,AI智能解译发挥着越来越重要的作用,并逐渐应用于地质调查填图、矿产资源预测、遥感影像解译、地质灾害防治、自动驾驶地图等方面。

本次给大家分享有关遥感、航拍、影像等深度学习数据集。

1、空客飞机影像检测生成的合成数据集

数据说明:

该数据集,专为检测卫星图像中的微小物体而设计。虽然许多数据集专注于大型结构,但解决了汽车、卡车船舶和飞机等较小类别的差距。它基于AITODV2注释,强调车辆和船舶,并辅之以空中客车飞机检测数据集以平衡等级

数据库:AiTODv2和空中客车飞机检测

类别:车辆,船舶,飞机

注释格式-MS-cocoison

注释类型-水平边界框(HBB)

原始的AL-TOD数据集非常庞大,包含28.036张图像,其中包含8个类别的700,621个对象,并使用水平边界框(HBB)进行标注。然而,它的规模使得在自由层平台上进行培训不切实际。为了提高可访问性,我们精心策划了一个用于微小物体检测的研发子集。

数据查看地址:https://www.dilitanxianjia.com/14818/

2、高分三号卫星高分辨率SAR飞机检测识别数据集

高分辨率SAR飞机检测识别数据集中所有图像采集自高分三号卫星,极化方式为单极化,空间分辨率为1m,成像模式为聚束式。数据集主要选用上海虹桥机场、北京首都机场和台湾桃园机场3个民用机场的影像数据,包含800×800、1000×1000、1200×1200和1500×1500共4种不同尺寸,共有4368张图片和16463个飞机目标实例。飞机的7个类别为:A220、A320/321、A330、ARJ21、Boeing737、 Boeing787和other,各个类别的实例以及数量如图1和图2所示,其中other表示不属于其余6个类别的飞机实例。 

数据查看地址:https://www.dilitanxianjia.com/11525/

3、军用飞机遥感识别数据集

军用飞机遥感识别数据集,这是一个遥感图像军用飞机识别数据集,包括3842个图像,20个类型,和22341个实例,标注了水平边界框和定向边界框。

数据查看地址:https://www.dilitanxianjia.com/1169/

4、基础设施破坏、地震、火灾、人体受伤、塌方、洪水等类型的灾害遥感数据集

自然灾害影像分类数据集,影像根据灾难类型被分类到单独的文件夹中,包含基础设施破坏、地震、火灾、人体受伤、塌方、洪水等类型的灾害。

数据查看地址:https://www.dilitanxianjia.com/467/

5、马萨诸塞州建筑遥感影像数据集

数据说明:从空中图像建立分割是一个具有挑战性的任务。来自附近树木的障碍物、相邻建筑物的阴影、屋顶的不同纹理和颜色、建筑物的不同形状和尺寸等都是阻碍当前模型分割尖锐建筑物边界的挑战。高质量的航空影像数据集便于比较现有的方法,并导致在机器学习和计算机视觉社区的航空影像应用的兴趣增加。

该数据集由151幅波士顿地区的航拍图像组成,每张图像的像素为1500×1500,面积为2.25平方公里。因此,整个数据集覆盖了大约340平方公里。数据被分割成137张图像的训练集,10张图像的测试集和4张图像的验证集。目标地图是通过对从OpenStreetMap项目获得的建筑足迹进行栅格化而获得的。该数据仅限于平均遗漏噪声水平约为5%或更低的地区。由于波士顿市向开放街道地图项目提供了整个城市的建筑足迹,因此能够收集到大量高质量的建筑足迹数据。数据集主要覆盖城市和郊区,各种规模的建筑物,包括独立的房屋和车库,都包含在标签中。这些数据集利用了马萨诸塞州发布的图像。所有图像重新缩放到每平方米1像素的分辨率。数据集的目标地图是使用来自OpenStreetMap项目的数据生成的。目标地图的测试和验证部分的数据集手工校正,使评估更准确。

数据查看地址:https://www.dilitanxianjia.com/14759/

6、多景观航空影像数据集

捕捉地球奇观的综合性空中景观数据集

数据说明:

名称:多景观航空影像数据集

分类:农业、机场、海滩、城市、沙漠、森林、草地、高速公路、湖、山、停车、港口、铁路、住宅

图像分辨率:256×256

像素每个类别的图片数:800

总图像数:12,000

数据查看地址:https://www.dilitanxianjia.com/14711/

7、航空场景分类遥感图像数据集

数据说明:数据集有30个不同的场景类,每个类大约有200到400个大小为600×600的样本。

该数据集是一种新的大规模航空影像数据集,它是从Google Earth图像中采集样本图像。请注意,虽然谷歌地球图像是使用原始光学航拍图像的RGB渲染图进行后处理的,但事实证明,即使在像素级土地利用方面,谷歌地球图像与真正的光学航拍图像之间也没有显著差异。/覆盖映射。因此,谷歌地球的图像也可以作为航空图像用于评估场景分类算法。

新的数据集由以下30种空中场景类型组成:机场、裸地、棒球场、海滩,桥梁,中心,教堂,商业,密集住宅,沙漠,农田,森林,工业,草地,中等住宅,山,公园,停车场,游乐场,池塘,港口,火车站,度假村,河流,学校,稀疏住宅,广场,体育场,储罐和高架桥。所有的图像都是由遥感影像判读领域的专家标注的,每个类别的部分样本如图1所示。该数据集总共有30个不同的场景类,每个类大约有200到400个大小为600×600的样本。

AID中的图像实际上是多源的,因为Google Earth的图像来自不同的远程成像传感器。这给场景分类带来了比UC-Merced数据集等单一源图像更大的挑战。此外,AID中每个类别的所有样本图像都是从全球不同国家和地区精挑细选而来,主要分布在我国、美国、英国、法国、ltaly、日本、德国等国,它们是在不同的时间、不同的成像条件下提取的,增加了类内数据的多样性。 图1显示了每个类的一些样本。

数据查看地址:https://www.dilitanxianjia.com/14653/

8、1976~2020年青藏高原典型冰川及冰湖遥感监测数据集

本文利用1976年至2020年的Landsat系列遥感影像数据,确保研究区每五年至少有一期数据覆盖。所选遥感影像的成像时间为9-12月的秋冬季节,尽量保证冰川区不受积雪和山体阴影的影响。参考中国第二次冰川编目数据,解译提取了西藏境内7条典型冰川及其末端冰湖的矢量边界。然后,结合近红外波段影像和谷歌地球高分辨率影像等勾绘了冰川及其冰湖边界,重点修正冰川末端的变化情况,勾绘过程中误差控制在一个像元以内。最后进行了矢量边界不确定性计算和精度评估。

本数据集由118个矢量格式文件(Shapefile)和一个excel表组成。每个矢量文件的属性包含”FID”, “Shape”, “Glc_Name”, “Glc_Long”, “Glc_Lati”, “Prm_Image”, “Altit_ave”, “Mtn_Name”, “Pref_Name”, “Compiler”, “Shape_Area”和”Shape_Per”等12列。excel表涵盖了冰川及其冰湖的面积以及对应的不确定性信息。数据投影:Asia North Albers Equal Area Conic projection, 中心经纬度: 105°,纬线1:25°,纬线2:47°。得出单个冰川面积的相对误差小于3%,冰川末端冰湖的相对误差在0%~7%之间。数据以Name_YearDate格式保存:例如,Shene_Glacier_19761217表示1976年12月17日采集的Shene冰川数据。

数据查看地址:https://www.dilitanxianjia.com/11529/

9、用于图像分割的水体卫星图像图数据集

数据说明:哨兵2号卫星拍摄的水体图像集。每个图像都有一个黑白面具,白色代表水,黑色代表除水之外的其他东西。口罩是通过计算NWDI(归一化水差指数),这是经常用于检测和测量卫星图像中的植被生成的,但更大的闯值被用来检测水体。(该数据集共有5682张照片)。

数据查看地址:https://www.dilitanxianjia.com/14929/

10、不同类型地形的卫星图像数据集

数据说明:这是使用Google Earth Pro创建的数据集。它包括七种不同地形的卫星图像,分别是海滩、冰块、火星、月球、山脉、海洋和河流。每个类包含大约100张图片。

数据查看地址:https://www.dilitanxianjia.com/14539/

11、利用卫星图像检测游泳池和汽车图片数据集

数据说明:该数据集利用卫星图像检测游泳池和汽车,该数据集共有10.2K张照片。

数据查看地址:https://www.dilitanxianjia.com/14331/

12、飓风破坏的受损房屋卫星图像数据集

飓风破坏的受损房屋卫星图像数据集,训练数据;5000张图片,1000张图片测试数据;

数据查看地址:https://www.dilitanxianjia.com/1176/

13、用于图像分割任务的森林航空图像数据集

数据说明:森林覆盖的自动分类和分割对于可持续发展和城市规划具有重要意义。不能低估森林的重要性,因为森林支持纤维、能源、娱乐、生物多样性、碳储存和通量以及水等基本生态系统服务的流动。在开始任何需要实地工作的工业活动之前,森林也是需要确定的重要地区。卫星或遥感图像可用于识别和分割图像中的森林覆盖区域,并清楚地了解森林覆盖面积。该问题被定义为一个二值分割任务来检测森林区域。

此数据集包含5108张256×256尺寸的航空图像。

metadata.csv文件维护有关航空图像及其各自的二进制遮罩图像的信息。

数据查看地址:https://www.dilitanxianjia.com/14839/

后续持续给大家分享相关数据集!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1478078.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python爬虫——Urllib库-上

这几天都在为了蓝桥杯做准备,一直在刷算法题,确实刷算法题的过程是及其的枯燥且枯燥的。于是我还是决定给自己找点成就感出来,那么Python的爬虫就这样开始学习了。 注:文章源于观看尚硅谷爬虫视频后笔记 目录 Urllib库 基本使…

Html零基础入门教程(非常详细)

文章目录 1.认识HTML2.html 框架3.HTML常见标签4.HTML语法特征5.列表 1.认识HTML html是超文本标记语言: 目前最新版本是html5,由w3c(万维网联盟)完成标准制定。 声明文档的类型是html5 超文本标记语言。 HTML ,全称“Hyper Text Markup Language(超文…

微信小程序图片展示淡入淡出纯WXSS实现,无需使用消耗性能的动画引擎

进入下面小程序可以体验效果: 以下代码的淡入淡出是切换图片的时候动画效果显示的。需要用其他方式,可以基于这个wxss修改即可 原理就是,图片默认样式的opacity 是 0,通过变量改变样式的opacity即可,然后需要有transi…

Vue纯前端实现链接生成二维码并支持下载

你好,我是小白Coding日志,一个热爱技术的程序员。在这里,我分享自己在编程和技术世界中的学习心得和体会。希望我的文章能够给你带来一些灵感和帮助。欢迎来到我的博客,一起在技术的世界里探索前行吧! 在现代 Web 应用…

(C语言)Sleep函数,system函数,数组练习,详解与运用

一维数组详解:http://t.csdnimg.cn/zahZF 二维数组详解:http://t.csdnimg.cn/h2mLe 我们看过可一维数组与二维数组,现在我们来进行简单的练习。 题目:编写代码,演⽰多个字符从两端移动,向中间汇聚 1. …

DFS之剪枝与优化

剪枝 1.优化搜索顺序:在大部分情况下,我们应该优先搜索分支较少的结点 2.排除等效冗余(在不考虑顺序的情况下,尽量用组合的方式来搜索) 3.可行性剪枝 4.最优性剪枝 5.记忆化搜索 165. 小猫爬山 - AcWing题库 import …

【快速上手QT】06-检测按键检测鼠标

今天聊聊事件,实际上我们在前两篇文章中就已经接触到了事件,分别是定时器事件和绘画事件,今天我们再来看看其他的事件。 我们打开QT助手,在QWidget的界面中找到下图中的地方。 我们可以看到很多函数的结尾都是Event,那…

日本极致产品力|200人的小型家族企业,如何年销7亿块巧克力?

蒂罗尔巧克力是日本经典的巧克力品牌。糖果业务是其早期的主营业务,在主营业务下滑的情况下,确立新的竞争方向、打造新产品、寻找新方法,成就巧克力极致产品力重回增长。 竞争环境变化:糖果主营业务持续下滑 始于1903年的松尾株式…

云原生架构技术揭秘:探索容器技术的奥秘

云原生的概念和演进都是围绕云计算的核心价值展开的,比如弹性、自动化、韧性,所以云原生所涵盖的技术领域非常丰富。 随着云计算技术的不断发展,云原生架构已经成为了新一代软件开发的重要趋势。本文将为您介绍云原生架构的相关技术&#xf…

产品经理岗位的任职资格和职业规划

产品经理主要是商业银行以客户为导向的,具体负责组织银行某一金融产品线的创新设计、生产营销和管理服务的工作。这类人士主要负责应用实施工作,其中产品线由一系列的产品构成,公司的产品经理主要分为全过程产品创新设计专家、全过程产品生产…

Decision Transformer

DT个人理解 emmm, 这里的Transformer 就和最近接触到的whisper一样,比起传统Transformer,自己还设计了针对特殊情况的tokens。比如whisper里对SOT,起始时间,语言种类等都指定了特殊tokens去做Decoder的输入和输出。 DT这里的作为输入的Tokens由RL里喜闻乐见的历史数据:…

QtCreator报Failed to parse qmlimportscanner output解决

错误如下: 定位错误位置 增加错误信息打印 打印执行命令 执行打印输出的命令,成功返回JSON 但输出的JSON对象不是json格式,而是命令 增加$$成功输出JSON 使用QtCreator12编译一次后,再使用QtCreator13成功编译通过,问题解决

Floyd算法、Dijkstra算法、基础拓扑排序

Floyd算法 Dijkstra算法 基础拓扑排序

TikTok运营应该使用什么IP?网络问题大全

想要迈过TikTok新手门槛,首先必须要学习的就是网络问题。很多人开始做TikTok账号或者TikTok小店时,都会遇到一些先前没有遇到的词汇和概念,比如原生IP,独享IP,甚至专线,那么一个IP可以做几个账号呢&#xf…

编译 qsqlmysql.dll QMYSQL driver not loaded

Qt 连接MySQL数据库,没有匹配的qsqlmysql.dll, 需要我们跟进自己Mysql 以及QT版本自行编译的。异常如下图: 安装环境为 VS2019 Qt5.12.12(msvc2017_64、以及源码) 我的安装地址:D:\Qt\Qt5.12.12 Mysql 8.1.0 默认安…

【C++从0到王者】第四十五站:图

文章目录 一、图的概念1.图概念2.顶点与边的概念3.有向图和无向图4.完全图5.邻接顶点6.顶点的度7.路径与路径长度8.简单路径与回路9.子图10.连通图与强连通图11.生成树 二、图的存储结构1.邻接矩阵1.1 基本概念1.2 代码实现 2.邻接表1.1 基本概念1.2 代码实现 3.总结 一、图的概…

如何设计一个秒杀系统?

秒杀是电商系统中常见的业务,用于吸引用户,刺激留存及消费所做的一种活动。经典的秒杀包含限时秒杀和限量秒杀。很多公司有专门的秒杀系统。哪个业务要做活动,就来对接这个系统。 系统特点 1、瞬时流量极大,过了秒杀时间点流量结束…

【HTML】HTML基础2(一些常用标签)

目录 例子 首先是网页图标 然后是一些常用标签 插入图片 例子 <!DOCTYPE html> <html><head><link rel"icon" href"img/银河护卫队-星爵.png" type"image/x-icon"><meta charset"utf-8"><title>…

[RoarCTF 2019]Easy Calc

这题考查的是: 字符串解析特性目录读取文件内容读取 字符串解析特性详解&#xff1a;PHP字符串解析特性 &#xff08;$GET/$POST参数绕过&#xff09;&#xff08;含例题 buuctf easycalc&#xff09;_参数解析 绕过-CSDN博客 ascii码查询表&#xff1a;ASCII 表 | 菜鸟工具 …

人工智能_大模型010_Centos7.9中CPU安装ChatGLM3-6B大模型_安装使用_010---人工智能工作笔记0145

从一个空的虚拟机开始安装: https://www.modelscope.cn/models/ZhipuAI/chatglm3-6b/files 可以看到这里有很多的数据文件,那么这里 这里点击模型文件就可以下载,这个就是chatglm3-6B的文件,需要点击每个文件,然后点击右边的下载,把文件都下载下来 右侧有下载按钮.点击下载可…