C++初阶:模版相关知识的进阶内容(非类型模板参数、类模板的特化、模板的分离编译)

news2025/2/25 12:04:14

结束了常用容器的介绍,今天继续模版内容的讲解:


文章目录

  • 1.非类型模版参数
  • 2.模板的特化
    • 2.1模版特化引入和概念
    • 2.2函数模版特化
    • 2.3类模板特化
      • 2.3.1全特化
      • 2.3.1偏特化
  • 3. 模板分离编译
    • 3.1分离编译概念
    • 3.2**模板的分离编译**
      • 分析原因


1.非类型模版参数

模板参数可以大致分为:分类类型形参非类型形参

类型形参即:出现在模板参数列表中,跟在class或者``typename`之类的参数类型名称

非类型形参,就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用

#include<iostream>
using namespace std;

template<class T,int N>
class MyArray
{
public:
    MyArray() 
    {
        for (int i = 0; i < N; ++i) 
        {
            _arr[i] = i;
        }
    }

    void print()
    {
        for (int i = 0; i < N; ++i)
        {
            cout << _arr[i] << " ";
        }
    }
private:
	T _arr[N];//定义一个静态数组
};

void test1()
{
    MyArray<int, 10> my;
    my.print();
}

int main()
{
    test1();
	return 0;
}

image-20240131123536819

注意:

  1. 浮点数、类对象以及字符串是不允许作为非类型模板参数的

  2. 非类型的模板参数必须在编译期就能确认结果

1


2.模板的特化

2.1模版特化引入和概念

通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型的可能会得到一些错误的结果,需要特殊处理。如下

template<class T>
bool Less(T left, T right)
{
    return left < right;
}

void test2()
{
    cout << Less(1, 2) << endl; //结果正确
    double d1 = 1.1;
    double d2 = 2.2;
    cout << Less(d1, d2) << endl; //结果正确
    double* p1 = &d1;
    double* p2 = &d2;
    cout << Less(p1, p2) << endl; //结果错误
}

int main()
{
    test2();
	return 0;
}

在这里插入图片描述

可以看到,Less绝对多数情况下都可以正常比较(前两者),但是在特殊场景下(最后一个)就得到错误的结果。上述示例中,p1指向的d1显然小于p2指向的d2对象,但是Less内部并没有比较p1和p2指向的对象内容,而比较的是p1和p2指针的地址的大小,这就无法达到预期而错误。

此时,就需要对模板进行特化。即:在原模板类的基础上,针对特殊类型所进行特殊化的实现方式。模板特化中分为函数模板特化与类模板特化

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2.2函数模版特化

函数模板的特化步骤:

  1. 必须要先有一个基础的函数模板

  2. 关键字template后面接一对空的尖括号< >

  3. 函数名后跟一对尖括号,尖括号中指定需要特化的类型

  4. 函数形参表: 必须要和模板函数的基础参数类型完全相同

解决上述问题:

template<class T>
bool Less(T left, T right)
{
 return left < right;
}
// 对Less函数模板进行特化
template<>
bool Less<double*>(double* a, double* b)//函数名后跟一对尖括号
{
 return *a < *b;
}

void test2()
{
 cout << Less(1, 2) << endl; //结果正确
 double d1 = 1.1;
 double d2 = 2.2;
 cout << Less(d1, d2) << endl; //结果正确
 double* p1 = &d1;
 double* p2 = &d2;
 cout << Less(p1, p2) << endl; //结果错误
}

int main()
{
 test2();
	return 0;
}

image-20240131165846767

同时我们也不仅可以利用特化解决,直接重载也是可以的(直接给出针对这个类型的函数):

bool Less(double* left, double* right)
{
return *left < *right;
}

该种实现简单明了,代码的可读性高,容易书写,因为对于一些参数类型复杂的函数模板,特化时特别给出,因此函数模板不建议特化。

2.3类模板特化

2.3.1全特化

全特化即是将模板参数列表中所有的参数都确定化

template<class T1, class T2>
class Data
{
public:
    Data() 
    { 
        cout << "Data<T1, T2>" << endl; 
    }
private:
    T1 _d1;
    T2 _d2;
};

template<>//这是全特化
class Data<int, double>
{
public:
    Data() 
    { 
        cout << "Data<int, double>" << endl;
    }
private:
    int _d1;
    double _d2;
};

void test3()
{
    Data<int,int> d1;
    Data<int,double> d2;
}

int main()
{
    test3();
	return 0;
}

image-20240131181339049

2.3.1偏特化

偏特化有以下两种表现方式:

  • 部分特化:将模板参数类表中的一部分参数特化
template<class T1, class T2>
class Data
{
public:
    Data() 
    { 
        cout << "正常,没特化:Data<T1, T2>" << endl; 
    }
private:
    T1 _d1;
    T2 _d2;
};

template<>//这是全特化
class Data<int, double>
{
public:
    Data() 
    { 
        cout << "全特化:Data<int, double>" << endl;
    }
private:
    int _d1;
    double _d2;
};

template<class T>//这是偏特化
class Data<T, double>
{
public:
    Data()
    {
        cout << "偏特化:Data<T, double>" << endl;
    }
private:
    int _d1;
    double _d2;
};

void test3()
{
    Data<int,int> d1;
    Data<int,double> d2;
    Data<char,double> d3;
}

int main()
{
    test3();
	return 0;
}

image-20240131183101969

当既满足偏特化,又满足全特化,会作何选择呢?

选择全特化:偏特化还需要参数匹配(还需要实例化一部分参数),我们直接用现成的(全特化)

  • 参数更进一步的限制:偏特化并不仅仅是指特化部分参数,而是针对模板参数更进一步的条件限制所设计出来的一个特化版本。
template<class T1,class T2>//这是偏特化另一情况:进行限制,这里限制为指针
class Data<T1*, T2*>
{
public:
    Data()
    {
        cout << "偏特化:Data<T1*, T2*>" << endl;
    }
private:
    T1 _d1;
    T2 _d2;
};

template<class T1, class T2>//这是偏特化另一情况:进行限制,这里限制为指针
class Data<T1&, T2&>
{
public:
    Data()
    {
        cout << "偏特化:Data<T1&, T2&>" << endl;
    }
};

void test3()
{
    Data<int*,int*> d1;
    Data<int&,double&> d2;
}

int main()
{
    test3();
	return 0;
}

image-20240131183953297


3. 模板分离编译

3.1分离编译概念

一个(项目)我们通常会用若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式

3.2模板的分离编译

在之前的各种使用中,我们没有过把模版声明和定义分离放在两个文件里

如果分离:

image-20240131220031964

一运行就发现:找不到这个函数

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

分析原因

我们知道C/C++程序的运行一般包括了预处理、编译、汇编和链接等步骤。

  1. 预处理(Preprocessing): 这个阶段会处理源代码中的预处理指令,比如#include#define等,将宏展开、头文件包含等操作。预处理的结果是生成一个纯粹的C++源文件,没有预处理指令。
  2. 编译(Compilation): 编译器将预处理后的源代码翻译成汇编语言。在这个阶段,编译器会进行词法、语法、语义分析,并生成相应的汇编代码。每个源文件都会被单独编译,生成相应的目标文件(Object File,通常以.obj.o等为扩展名)。
  3. 汇编(Assembly): 汇编器将汇编代码转换成机器语言的目标文件。
  4. 链接(Linking): 链接器将多个目标文件、库文件以及系统的一些运行时代码合并成一个可执行文件。链接的过程包括地址解析、符号解析、重定向等步骤,确保各个目标文件中的符号能够正确关联。

从main函数开始执行,我们遇到了Add(1,2);因为包含了.h头文件(有声明)我们会到链接部分找实现,但是,在另一方文件的实现不知道我进行了实例化,也就没有进行实例化,所以链接后找不到

模板在使用时需要在编译阶段进行具体实例化,而编译器需要在编译的时候能够看到模板的完整定义,以便正确生成代码。如果将模板的声明和定义分离成不同的文件,编译器就无法在编译阶段得知模板的具体实现

模板的编译过程通常包含两个主要阶段:模板的定义和模板的实例化。

  1. 模板定义: 模板定义包括模板的声明和实现。这一部分通常包含在头文件(.h或.hpp)中,并在源文件(.cpp)中包含。在编译过程的第一阶段,编译器会处理源文件和头文件,但并不会生成实际的代码。
  2. 模板实例化: 在使用模板的源文件中,当实际用到模板的具体类型时,编译器会进行模板实例化。这时,编译器需要看到模板的完整定义,以便生成相应类型的实际代码。这个阶段实际上是对模板进行展开,生成模板特定实例的代码。

由于模板实例化需要在编译时完成,模板的定义必须在使用它的源文件中可见。如果将模板的声明和实现分离到不同的文件,编译器在实例化时就无法找到完整的定义,从而导致编译错误

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1477664.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vulnhub-----Hackademic靶机

文章目录 1.C段扫描2.端口扫描3.服务扫描4.web分析5.sql注入6.目录扫描7.写马php反弹shell木马 8.反弹shell9.内核提权 1.C段扫描 kali:192.168.9.27 靶机&#xff1a;192.168.9.25 ┌──(root㉿kali)-[~] └─# arp-scan -l Interface: eth0,…

tinymce上传图片或者其他文件等等

技术选型 tips: tinymce在vue中常用的有两种方式 第一种: 官方组件,点我 优点: 不用自己封装组件 缺点: 需要申请特定apikey,类似于百度,高德地图; 第二种: 就是下面这种 优点: 不需要申请特定的apikey 缺点: 需要自己手动的封装组件,灵活性高 Vue 2.x和3.x基本没有区别 tinym…

《Redis 设计与实现》读书概要

注&#xff1a; 《Redis 设计与实现》一书基于 Redis 2.9 版本编写&#xff0c;部分内容已过时&#xff0c;过时之处本文会有所说明。本文为读书笔记&#xff0c;部分简单和日常使用较少的知识点未记录。原书网页版地址 https://redisbook.com/ 一、底层数据结构 SDS(Simple Dy…

dcat admin 自定义页面

自定义用户详情页 整体分为两部分&#xff1a;用户信息、tab框 用户信息采用自定义页面加载&#xff0c;controller代码如下&#xff1a; protected function detail($id) {return Show::make($id, GameUser::with(finance), function (Show $show) {// 这段就是加载自定义页面…

Window部署Jaeger

参考&#xff1a;windows安装使用jaeger链路追踪_windows安装jaeger-CSDN博客 下载&#xff1a;Releases jaegertracing/jaeger GitHub Jaeger – Download Jaeger 目录 1、安装nssm 2、安装运行 elasticsearch 3、安装运行 3.1部署JaegerAgent 3.2部署JaegerCollec…

MySQL 存储过程批量插入总结

功能需求背景&#xff1a;今天接到产品经理核心业务表的数据压测功能&#xff0c;让我向核心业务表插入百万级的业务量数据&#xff0c;我首先想到的办法就是存储过程实现数据的批量 。 由于无法提供核心业务表&#xff0c;本文仅仅提供我刚刚自己创建的表bds_base_user 表做相…

7-AMCA NHS ester,113721-87-2,可以将荧光基团特异性地连接到目标分子上

113721-87-2&#xff0c;7-AMCA NHS ester&#xff0c;AMCA-OSu&#xff0c;AMCA-NHS&#xff0c;AMCA N-succinimidyl ester&#xff0c;7-AMCA NHS 活化酯&#xff0c;7-氨基-4-甲基香豆素-3-乙酸 N-琥珀酰亚胺酯&#xff0c;可以将荧光基团特异性地连接到目标分子上 您好&a…

IDC 中搭建 Serverless 应用平台:通过 ACK One 和 Knative 玩转云资源

作者&#xff1a;元毅、庄宇 如何打造云上&#xff08;公共云&#xff09;、云下&#xff08;IDC 数据中心&#xff09;统一的云原生 Serverless 应用平台&#xff0c;首先我们来看一下 ChatGPT 4 会给出什么样的答案&#xff1a; 如何打造云上、云下统一的云原生 Serverless…

echarts图表用key强制刷新后空白

我的需求是echarts图表全屏后退出全屏在edge浏览器上没有什么问题但是在Chrome浏览器上会出现表格的线不能变回原来的比例的问题 我就想在退出全屏的时候强制刷新一下echarts图表外面的这个div useEffect(() > {if (col) {col.addEventListener("webkitfullscreenchan…

Windows系统安装TortoiseSVN并结合内网穿透实现远程访问本地服务器——“cpolar内网穿透”

文章目录 前言1. TortoiseSVN 客户端下载安装2. 创建检出文件夹3. 创建与提交文件4. 公网访问测试 前言 TortoiseSVN是一个开源的版本控制系统&#xff0c;它与Apache Subversion&#xff08;SVN&#xff09;集成在一起&#xff0c;提供了一个用户友好的界面&#xff0c;方便用…

Node.js基础---npm与包

包 概念&#xff1a;Node.js 中的第三方模块又叫做包 来源&#xff1a;由第三方个人或团队开发出来的&#xff0c;免费使用&#xff0c;且为开源 为什么需要&#xff1a;Node.js的内置模块只有一些底层API&#xff0c;开发效率低 包是基于内置模块封装出来的&#xff0c;提供更…

express+mysql+vue,从零搭建一个商城管理系统6--数据校验和登录

提示&#xff1a;学习express&#xff0c;搭建管理系统 文章目录 前言一、修改models/user.js二、修改routes下的user.js三、Api新建user/login接口四、删除数据库原有数据&#xff0c;添加新验证规则的用户四、用户登录总结 前言 需求&#xff1a;主要学习express&#xff0c;…

IP源防攻击IPSG(IP Source Guard)

IP源防攻击IPSG&#xff08;IP Source Guard&#xff09;是一种基于二层接口的源IP地址过滤技术&#xff0c;它能够防止恶意主机伪造合法主机的IP地址来仿冒合法主机&#xff0c;还能确保非授权主机不能通过自己指定IP地址的方式来访问网络或攻击网络。 2.1 IPSG基本原理 绑定…

c# 广度优先搜索(Breadth-First Search,BFS)

在这篇文章中我将讨论用于树和图的两种遍历机制之一。将使用 C# 示例介绍广度优先搜索 (BFS)。图是最具挑战性和最复杂的数据结构之一。 广度优先搜索的工作原理&#xff1a;广度优先搜索 &#xff08;BFS&#xff09;是一种探索树或图的方法。在 BFS 中&#xff0c;您首先探索…

Mac 重新安装系统

Mac 重新安装系统 使用可引导安装器重新安装&#xff08;可用于安装非最新的 Mac OS&#xff0c;系统降级&#xff0c;需要清除所有数据&#xff09; 插入制作好的可引导安装器&#xff08;U盘或者移动固态硬盘&#xff09;&#xff0c;如何制作可引导安装器将 Mac 关机将 Ma…

【多智能体】MetaGPT配置教程(应用智谱AI的GLM-4)

MetaGPT配置教程&#xff08;使用智谱AI的GLM-4&#xff09; 文章目录 MetaGPT配置教程&#xff08;使用智谱AI的GLM-4&#xff09;零、为什么要学MetaGPT一、配置环境二、克隆代码仓库三、设置智谱AI配置四、 示例demo&#xff08;狼羊对决&#xff09;五、参考链接 零、为什么…

Appium手机Android自动化

目录 介绍 什么是APPium&#xff1f; APPium的特点 环境准备 adb(android调试桥)常用命令 appium图形化简单使用 连接手机模拟器 使用appium桌面端应用程序 ​编辑 整合java代码测试 环境准备 引入所需依赖 书写代码简单启动 ​编辑 Appium元素定位 id定位 介…

unity自定义着色器基础

这些内置渲染管线的着色器示例演示了编写自定义着色器的基础知识&#xff0c;并涵盖了常见的用例。 有关编写着色器的信息&#xff0c;请参阅编写着色器。 设置场景 第一步是创建一些用于测试着色器的对象。在主菜单中选择 Game Object > 3D Object > Capsule。然后&a…

AMEYA360:广和通5G智能模组SC171支持Android、Linux和Windows系统,拓宽智能物联网应用

世界移动通信大会2024期间&#xff0c;广和通宣布&#xff1a;5G智能模组SC171除支持Android操作系统外&#xff0c;还兼容Linux和Windows系统&#xff0c;帮助更多智能终端客户快速迭代产品&#xff0c;拓宽智能化应用覆盖范围。 广和通SC171系列基于高通QCM6490物联网解决方案…

2022年下半年教师资格证考试《综合素质》(中学)题

1.一位肖老师认为&#xff1a;“教师在教学中不能只关注学科层面的知识&#xff0c;还要爱学生&#xff0c;建立和谐的师生关系”。她在日常工作中以此为行动指南&#xff0c;这表明肖老师所处的教师专业发展阶段是&#xff08; B&#xff09;。 A“虚拟关注”阶段 B“自我更新…