【深度学习】Pytorch教程(八):PyTorch数据结构:2、张量的数学运算(6):高维张量:乘法、卷积(conv2d~四维张量;conv3d~五维张量)

news2025/1/19 23:13:25

文章目录

  • 一、前言
  • 二、实验环境
  • 三、PyTorch数据结构
    • 1、Tensor(张量)
      • 1. 维度(Dimensions)
      • 2. 数据类型(Data Types)
      • 3. GPU加速(GPU Acceleration)
    • 2、张量的数学运算
      • 1. 向量运算
      • 2. 矩阵运算
      • 3. 向量范数、矩阵范数、与谱半径详解
      • 4. 一维卷积运算
      • 5. 二维卷积运算
      • 6. 高维张量
        • torch.matmul VS torch.mul
        • 乘法计算原则
        • 二维卷积conv2d(四维张量)
        • 三维卷积conv3d(五维张量)

一、前言

  卷积运算是一种在信号处理、图像处理和神经网络等领域中广泛应用的数学运算。在图像处理和神经网络中,卷积运算可以用来提取特征、模糊图像、边缘检测等。在信号处理中,卷积运算可以用来实现滤波器等操作。

二、实验环境

  本系列实验使用如下环境

conda create -n DL python==3.11
conda activate DL
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

三、PyTorch数据结构

1、Tensor(张量)

  Tensor(张量)是PyTorch中用于表示多维数据的主要数据结构,类似于多维数组,可以存储和操作数字数据。

1. 维度(Dimensions)

  Tensor(张量)的维度(Dimensions)是指张量的轴数或阶数。在PyTorch中,可以使用size()方法获取张量的维度信息,使用dim()方法获取张量的轴数。

在这里插入图片描述

2. 数据类型(Data Types)

  PyTorch中的张量可以具有不同的数据类型:

  • torch.float32或torch.float:32位浮点数张量。
  • torch.float64或torch.double:64位浮点数张量。
  • torch.float16或torch.half:16位浮点数张量。
  • torch.int8:8位整数张量。
  • torch.int16或torch.short:16位整数张量。
  • torch.int32或torch.int:32位整数张量。
  • torch.int64或torch.long:64位整数张量。
  • torch.bool:布尔张量,存储True或False。

【深度学习】Pytorch 系列教程(一):PyTorch数据结构:1、Tensor(张量)及其维度(Dimensions)、数据类型(Data Types)

3. GPU加速(GPU Acceleration)

【深度学习】Pytorch 系列教程(二):PyTorch数据结构:1、Tensor(张量): GPU加速(GPU Acceleration)

2、张量的数学运算

  PyTorch提供了丰富的操作函数,用于对Tensor进行各种操作,如数学运算、统计计算、张量变形、索引和切片等。这些操作函数能够高效地利用GPU进行并行计算,加速模型训练过程。

1. 向量运算

【深度学习】Pytorch 系列教程(三):PyTorch数据结构:2、张量的数学运算(1):向量运算(加减乘除、数乘、内积、外积、范数、广播机制)

2. 矩阵运算

【深度学习】Pytorch 系列教程(四):PyTorch数据结构:2、张量的数学运算(2):矩阵运算及其数学原理(基础运算、转置、行列式、迹、伴随矩阵、逆、特征值和特征向量)

3. 向量范数、矩阵范数、与谱半径详解

【深度学习】Pytorch 系列教程(五):PyTorch数据结构:2、张量的数学运算(3):向量范数(0、1、2、p、无穷)、矩阵范数(弗罗贝尼乌斯、列和、行和、谱范数、核范数)与谱半径详解

4. 一维卷积运算

【深度学习】Pytorch 系列教程(六):PyTorch数据结构:2、张量的数学运算(4):一维卷积及其数学原理(步长stride、零填充pad;宽卷积、窄卷积、等宽卷积;卷积运算与互相关运算)

5. 二维卷积运算

【深度学习】Pytorch 系列教程(七):PyTorch数据结构:2、张量的数学运算(5):二维卷积及其数学原理

6. 高维张量

torch.matmul VS torch.mul
  1. torch.matmul:用于执行两个张量的矩阵乘法操作,它要求两个张量的维度需要满足矩阵乘法的规则,例如对于两个三维张量,torch.matmul将在最后两个维度上执行矩阵乘法。
import torch

# 创建两个张量
tensor1 = torch.randn(3, 4) 
tensor2 = torch.randn(4, 5)  

# 矩阵乘法
result = torch.matmul(tensor1, tensor2) 
print(result.shape) 
  1. torch.mul:用于对两个张量进行逐元素相乘,即*运算符,会将两个张量的每个元素进行相乘。要求两个张量的形状需要一致或者满足广播规则。

  2. 对比

import torch


tensor1 = torch.tensor([[1, 2, 3],
                        [4, 5, 6]])  # shape: (2, 3)

tensor2 = torch.tensor([[7, 8],
                        [9, 10],
                        [11, 12]])  # shape: (3, 2)

# 使用 torch.matmul 进行矩阵乘法
result_matmul = torch.matmul(tensor1, tensor2)  # 结果为 shape (2, 2)
print("Matmul result:")
print(result_matmul)

# 使用 torch.mul 进行逐元素相乘
result_mul = torch.mul(tensor1, tensor2.T)  # 结果为逐元素相乘后的张量
print("\nMul result:")
print(result_mul)

在这里插入图片描述

乘法计算原则
  1. 张量的维度匹配:两个张量进行乘法操作时,需要保证它们的维度匹配。例如,两个张量的维度分别为(a,b,c)和(c,d),那么它们可以进行乘法操作。

  2. 批量乘法:如果两个张量的维度不完全匹配,但它们在最后一维上相符,那么可以进行批量乘法。这意味着两个张量的前面维度需要匹配,并且其中一个张量的维度需要和另一个张量的倒数第二个维度相匹配。

import torch


tensor1 = torch.randn(3, 4, 5)  # 维度为 (3, 4, 5)
tensor2 = torch.randn(3, 5, 6)  # 维度为 (3, 5, 6)
result = torch.matmul(tensor1, tensor2)

print(result.size())  # 输出为 (3, 4, 6),说明两个张量进行了批量乘法
  1. 广播机制:如果两个张量的维度不完全匹配,但是可以通过广播机制进行维度的扩展以匹配,那么可以进行乘法操作。广播机制会自动将维度较小的张量扩展到维度较大的张量上。
import torch


tensor1 = torch.tensor([[1, 2, 3],
                        [4, 5, 6]])  # shape: (2, 3)

tensor2 = torch.tensor([[7, 8],
                        [9, 10],
                        [11, 12]])  # shape: (3, 2)

tensor3 = torch.cat([tensor1, tensor1], dim=1)

# 通过 unsqueeze 添加新的维度来复制成三维张量
# tensor1_3d = tensor1.unsqueeze(0)  # 在第一个维度上添加新的维度
# print(tensor1_3d.shape)  # 输出:(1, 2, 3)
tensor1_3d = tensor1.expand(2, 2, 3)  # 扩展维度
print(tensor1_3d.shape)  # 输出:(2, 2, 3)
print(tensor1_3d)

result_matmul1 = torch.matmul(tensor1, tensor2)
print(f"{tensor1.size()}*{tensor2.size()}={result_matmul1.size()}")
print(result_matmul1)

result_matmul2 = torch.matmul(tensor1_3d, tensor2)
print(f"{tensor1_3d.size()}*{tensor2.size()}={result_matmul2.size()}")
print(result_matmul2)

result_matmul3 = torch.matmul(tensor2, tensor1)
print(f"{tensor2.size()}*{tensor1.size()}={result_matmul3.size()}")
print(result_matmul3)

result_matmul4 = torch.matmul(tensor2, tensor1_3d)
print(f"{tensor2.size()}*{tensor1_3d.size()}={result_matmul4.size()}")
print(result_matmul4)

在这里插入图片描述

二维卷积conv2d(四维张量)
import torch
import torch.nn.functional as F

# batch_size=2, channel=3, height=32, width=32
input_tensor = torch.randn(2, 3, 32, 32)

# out_channels=4, in_channels=3, kernel_height=3, kernel_width=3
conv_kernel = torch.randn(4, 3, 3, 3)

# 执行卷积操作
output = F.conv2d(input_tensor, conv_kernel, padding=1)

print(output.size())  # 输出为 (2, 4, 32, 32)
  • 通道匹配:卷积核的输入通道数必须与输入张量的通道数相同( 3 = 3 3=3 3=3),这样才能进行逐通道的卷积操作。

  • 大小匹配:卷积核的大小必须小于或等于输入张量的大小( 3 < 32 3<32 3<32),否则无法在输入张量上进行卷积操作。

  • 卷积参数

    • 步长:卷积时的步长参数需要考虑输入张量的大小;
    • 填充:填充参数可以用来控制卷积操作的输出尺寸,用于保持输入和输出的尺寸一致。
三维卷积conv3d(五维张量)
import torch
import torch.nn.functional as F


#batch_size=2, channel=3, depth=10, height=32, width=32
input_tensor = torch.randn(2, 3, 10, 32, 32)

# out_channels=4, in_channels=3, kernel_depth=3, kernel_height=3, kernel_width=3
conv_kernel = torch.randn(4, 3, 3, 3, 3)
# 执行三维卷积操作
output = F.conv3d(input_tensor, conv_kernel, padding=1)

print(output.size())  # 输出为 (2, 4, 10, 32, 32)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1475470.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

NerfStudio安装及第一个场景重建

NerfStudio文档是写在windows和linux上安装&#xff0c;本文记录Linux安装的过程&#xff0c;且我的cuda是11.7 创建环境 conda create --name nerfstudio -y python3.8 conda activate nerfstudio python -m pip install --upgrade pip Pytorch要求2.0.1之后的,文档推荐cud…

Vue:【亲测可用】父组件数组包对象,传给子组件对象,子组件修改属性(字段)后,父组件没有更新

场景&#xff1a;vue中父组件数组包对象&#xff0c;传给子组件对象&#xff0c;子组件修改属性&#xff08;字段&#xff09;后&#xff0c;父组件没有更新 代码&#xff1a; # 父组件 <div v-for"(object, name, index) in arr" :key"index"><…

autocrlf和safecrlf

git远程拉取及提交代码&#xff0c;windows和linux平台换行符转换问题&#xff0c;用以下两行命令进行配置&#xff1a; git config --global core.autocrlf false git config --global core.safecrlf true CRLF是windows平台下的换行符&#xff0c;LF是linux平台下的换行符。…

jvm常用参数配置

一、 常用参数 -Xms JVM启动时申请的初始Heap值&#xff0c;默认为操作系统物理内存的1/64但小于1G。默认当空余堆内存大于70%时&#xff0c;JVM会减小heap的大小到-Xms指定的大小&#xff0c;可通过-XX:MaxHeapFreeRation来指定这个比列。Server端JVM最好将-Xms和-Xmx设为相同…

LVGL 环境搭建-基于WSL

背景说明 小白刚开始接触LVGL&#xff0c;前些日子狠心花198元入手了一块堪称LVGL 入门利器~HMI-Board 开发板&#xff0c;虽然有RT-Thread 集成好的LVGL 环境&#xff0c;只需要几个步骤就能成功把lvgl 的示例运行起来&#xff0c;对于爱折腾的我来说&#xff0c;过于简单也并…

Nginx高级技巧:实现负载均衡和反向代理

文章目录 Nginx概述Nginx作用正向代理反向代理负载均衡动静分离 Nginx的安装 -->Docker3.1 安装Nginx3.2 Nginx的配置文件3.3 修改docker-compose文件 Nginx源码安装nginx常用命令nginx配置文件配置文件位置配置文件结构详情 Nginx的反向代理【重点】基于Nginx实现反向代理4…

pandas两列或多列全组合

现有星期、国家、标签三类数据&#xff0c;希望得到全部组合&#xff0c;实现方式如下&#xff1a; #星期和国家全组合 a1pd.DataFrame(indexrange(7),columns[星期],datanp.arange(0,7)) b1pd.DataFrame(data[美国,新加坡],columns[国家]) c1pd.DataFrame(data[a,b],columns[…

数据结构:栈和队列与栈实现队列(C语言版)

目录 前言 1.栈 1.1 栈的概念及结构 1.2 栈的底层数据结构选择 1.2 数据结构设计代码&#xff08;栈的实现&#xff09; 1.3 接口函数实现代码 &#xff08;1&#xff09;初始化栈 &#xff08;2&#xff09;销毁栈 &#xff08;3&#xff09;压栈 &#xff08;4&…

【软件测试】--功能测试4-html介绍

1.1 前端三大核心 html:超文本标记语言&#xff0c;由一套标记标签组成 标签&#xff1a; 单标签&#xff1a;<标签名 /> 双标签:<标签名></标签名> 属性&#xff1a;描述某一特征 示例:<a 属性名"属性值"> 1.2 html骨架标签 <!DOC…

备考2025年考研数学二:2015-2024年考研数学真题•填空题练一练

这几天考研初试分数线陆续出来了&#xff0c;似乎竞争更激烈了。明年要顺利进入心目中的大学和专业&#xff0c;必须加倍努力&#xff0c;锁定胜局。 今天继续分享2015年-2024年的考研数学二填空题&#xff0c;随机做5道真题&#xff0c;并提供解析。看看正在备考2025年考研的…

为什么会造成服务器丢包?

随着云服务器市场的发展和网络安全问题&#xff0c;服务器丢包问题成为了一个普遍存在的现象。服务器丢包是指在网络传输过程中&#xff0c;数据包由于各种原因未能到达目标服务器&#xff0c;导致数据传输中断或延迟。那么&#xff0c;为什么会造成服务器丢包呢&#xff1f;下…

基于Camunda实现bpmn2.0各种类型监听器Listeners

基于Camunda实现bpmn2.0各种类型监听器Listeners ​ 监听器是在 BPMN 2.0 规范基础上扩展的功能&#xff0c;能扩展业务功能与流程的联系。 可以通过配置监听器的方式和各种动作。 ​ 监听器在生产中通常会用在几个方面&#xff1a; 动态分配节点受理人&#xff0c;通过前一…

Django项目使用vue打包前端页面使用教程

一、vue打包&#xff1a; 一般使用 npm run build 进行打包&#xff0c;打包完成后会生成一个dist文件夹 二、修改vue.config.js配置 vue.config..js配置里面增加&#xff1a; assetsDir: static 三、修改Django项目 将Django的static文件夹删除&#xff0c;移动di…

工业RTU串口网关有哪些使用用途和使用场景

工业RTU串口网关有哪些使用用途和使用场景 搜索蓝蜂物联网官网&#xff0c;即可免费领取样机使用&#xff01;&#xff01;先到先得&#xff01;&#xff01;&#xff01; 工业RTU串口网关在工业自动化领域中发挥着重要作用&#xff0c;其主要用途包括数据采集、协议转换、远…

Openstack云计算架构及前期服务搭建

openstack介绍 Openstack是一个开源的云计算管理平台项目&#xff0c;由几个主要的组件组合起来完成具体工作&#xff0c;支持几乎所有的云环境&#xff0c;项目目标是提供实施简单、可大规模扩展、丰富、标准统一的云计算管理平台 ----百度百科 Openstack是一个云操作系统&a…

Leetcoder Day28| 贪心算法part02

122.买卖股票的最佳时机 II 给定一个数组&#xff0c;它的第 i 个元素是一支给定股票第 i 天的价格。 设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易&#xff08;多次买卖一支股票&#xff09;。 注意&#xff1a;你不能同时参与多笔交易&#xff08…

逆向案例一:AES解密基于数位观察城市数据

import requests import json from Crypto.Cipher import AES # 开始解密 from Crypto.Util.Padding import unpad #去填充的逻辑 import base64 url https://app.swguancha.com/client/v1/cPublic/consumer/baseInfo data {current: 1,"dimensionTime": "20…

C# 学习第四弹——字符串

一、char类型的使用 字符使用单引号&#xff0c;单个字符 转义字符是一种特殊的字符变量&#xff0c;以反斜线开头&#xff0c;后跟一个或多个字符。 输出多级目录可以使用 二、字符串的声明和初始化 1、引用字符串常量 引用字符串常量初始化——字符使用单引号&#xff0…

阿里云A10推理qwen

硬件配置 vCPU&#xff1a;32核 内存&#xff1a;188 GiB 宽带&#xff1a;5 Mbps GPU&#xff1a;NVIDIA A10 24Gcuda 安装 wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda-repo-rhel7-12-1-local-12.1.0_530.30.02-1.x86_64.rpm s…

用Java语言创建的Spring Boot项目中,如何传递List集合呢?

前言&#xff1a; 在上篇文章中&#xff0c;用Java语言创建的Spring Boot项目中&#xff0c;如何传递数组呢&#xff1f;&#xff1f;-CSDN博客&#xff0c;我们了解到Spring Boot项目中如何传递数组&#xff0c;但是&#xff0c;对于同类型的List集合&#xff0c;我们又该如何…