TF-IDF,textRank,LSI_LDA 关键词提取

news2025/1/22 8:05:16

目录

任务

代码

keywordExtract.py

TF_IDF.py

LSI_LDA.py

结果


任务

用这三种方法提取关键词,代码目录如下,

keywordExtract.py 为运行主程序

corpus.txt 为现有数据文档

其他文件,停用词,方法文件

corpus.txt 可以自己搞一个,大概张这样,没一行为一条数据

stopword.txt 停用词表网上随便找

代码

keywordExtract.py

import jieba
import jieba.posseg as psg
from TF_IDF import tfidf_extract
from TextRank import textrank_extract
from LSI_LDA import topic_extract


# 停用词表加载方法
def get_stopword_list():
    # 停用词表存储路径,每一行为一个词,按行读取进行加载
    # 进行编码转换确保匹配准确率
    stop_word_path = './stopword.txt'
    stopword_list = [sw.replace('\n', '') for sw in open(stop_word_path,encoding='utf-8').readlines()]
    return stopword_list


# 分词方法,调用结巴接口
def seg_to_list(sentence, pos=False):
    if not pos:
        # 不进行词性标注的分词方法
        seg_list = jieba.cut(sentence)
    else:
        # 进行词性标注的分词方法
        seg_list = psg.cut(sentence)
    return seg_list


# 去除干扰词
def word_filter(seg_list, pos=False):
    '''
    根据分词结果对干扰词进行过滤
    :param seg_list:
    :param pos: 判断是否过滤除名词外的其他词性
    :return:
    '''
    stopword_list = get_stopword_list()
    filter_list = []
    # 根据POS参数选择是否词性过滤
    ## 不进行词性过滤,则将词性都标记为n,表示全部保留
    for seg in seg_list:
        if not pos:
            word = seg
            flag = 'n'
        else:
            word = seg.word
            flag = seg.flag
        if not flag.startswith('n'):
            continue
        # 过滤停用词表中的词,以及长度为<2的词
        if not word in stopword_list and len(word) > 1:
            filter_list.append(word)

    return filter_list


if __name__ == '__main__':
    text = '6月19日,《2012年度“中国爱心城市”公益活动新闻发布会》在京举行。' + \
           '中华社会救助基金会理事长许嘉璐到会讲话。基金会高级顾问朱发忠,全国老龄' + \
           '办副主任朱勇,民政部社会救助司助理巡视员周萍,中华社会救助基金会副理事长耿志远,' + \
           '重庆市民政局巡视员谭明政。晋江市人大常委会主任陈健倩,以及10余个省、市、自治区民政局' + \
           '领导及四十多家媒体参加了发布会。中华社会救助基金会秘书长时正新介绍本年度“中国爱心城' + \
           '市”公益活动将以“爱心城市宣传、孤老关爱救助项目及第二届中国爱心城市大会”为主要内容,重庆市' + \
           '、呼和浩特市、长沙市、太原市、蚌埠市、南昌市、汕头市、沧州市、晋江市及遵化市将会积极参加' + \
           '这一公益活动。中国雅虎副总编张银生和凤凰网城市频道总监赵耀分别以各自媒体优势介绍了活动' + \
           '的宣传方案。会上,中华社会救助基金会与“第二届中国爱心城市大会”承办方晋江市签约,许嘉璐理' + \
           '事长接受晋江市参与“百万孤老关爱行动”向国家重点扶贫地区捐赠的价值400万元的款物。晋江市人大' + \
           '常委会主任陈健倩介绍了大会的筹备情况。'

    pos = True
    seg_list = seg_to_list(text, pos)
    filter_list = word_filter(seg_list, pos)

    print('TF-IDF模型结果:')
    tfidf_extract(filter_list)

    print('TextRank模型结果:')
    textrank_extract(text)

    print('LSI模型结果:')
    topic_extract(filter_list, 'LSI', pos)

    print('LDA模型结果:')
    topic_extract(filter_list, 'LDA', pos)



 

TF_IDF.py

用现有数据文档 corpus.txt 训练后,再调用的,看代码注释

'''
词频-逆文档频次算法
提取对文档重要的关键词,由 TF 及 IDF 构成
TF:一个词在此文档中的词频
IDF:一个词在所有文档中出现的词频
两个相乘
1.训练语料库生成数据集对应的 idf 值字典,后续对新文档每个词计算 TF-IDF 时,直接从字典中读取
2.可依赖于训练语料库,也可对每次新的文档集直接计算
'''
import math
import functools
import jieba
import jieba.posseg as psg
from jieba import analyse


# TF-IDF类
class TfIdf(object):
    # 四个参数分别是:训练好的idf字典,默认idf值,处理后的待提取文本,关键词数量
    def __init__(self, idf_dic, default_idf, word_list, keyword_num):
        self.word_list = word_list
        self.idf_dic, self.default_idf = idf_dic, default_idf
        self.tf_dic = self.get_tf_dic()
        self.keyword_num = keyword_num

    # 统计tf值
    def get_tf_dic(self):
        tf_dic = {}
        for word in self.word_list:
            tf_dic[word] = tf_dic.get(word, 0.0) + 1.0

        tt_count = len(self.word_list)
        for k, v in tf_dic.items():
            tf_dic[k] = float(v) / tt_count

        return tf_dic

    # 按公式计算tf-idf
    def get_tfidf(self):
        tfidf_dic = {}
        for word in self.word_list:
            idf = self.idf_dic.get(word, self.default_idf)
            tf = self.tf_dic.get(word, 0)

            tfidf = tf * idf
            tfidf_dic[word] = tfidf

        tfidf_dic.items()
        # 根据tf-idf排序,去排名前keyword_num的词作为关键词
        for k, v in sorted(tfidf_dic.items(), key=functools.cmp_to_key(cmp), reverse=True)[:self.keyword_num]:
            print(k + "/ ", end='')
        print()


#  排序函数,用于topK关键词的按值排序,得分相同,再根据关键词排序
def cmp(e1, e2):
    import numpy as np
    res = np.sign(e1[1] - e2[1])
    if res != 0:
        return res
    else:
        a = e1[0] + e2[0]
        b = e2[0] + e1[0]
        if a > b:
            return 1
        elif a == b:
            return 0
        else:
            return -1


# 停用词表加载方法
def get_stopword_list():
    # 停用词表存储路径,每一行为一个词,按行读取进行加载
    # 进行编码转换确保匹配准确率
    stop_word_path = './stopword.txt'
    stopword_list = [sw.replace('\n', '') for sw in open(stop_word_path,encoding='utf-8').readlines()]
    return stopword_list


# 分词方法,调用结巴接口
def seg_to_list(sentence, pos=False):
    if not pos:
        # 不进行词性标注的分词方法
        seg_list = jieba.cut(sentence)
    else:
        # 进行词性标注的分词方法
        seg_list = psg.cut(sentence)
    return seg_list


# 去除干扰词
def word_filter(seg_list, pos=False):
    '''
    根据分词结果对干扰词进行过滤
    :param seg_list:
    :param pos: 判断是否过滤除名词外的其他词性
    :return:
    '''
    stopword_list = get_stopword_list()
    filter_list = []
    # 根据POS参数选择是否词性过滤
    ## 不进行词性过滤,则将词性都标记为n,表示全部保留
    for seg in seg_list:
        if not pos:
            word = seg
            flag = 'n'
        else:
            word = seg.word
            flag = seg.flag
        if not flag.startswith('n'):
            continue
        # 过滤停用词表中的词,以及长度为<2的词
        if not word in stopword_list and len(word) > 1:
            filter_list.append(word)

    return filter_list


# 数据加载,pos为是否词性标注的参数,corpus_path为数据集路径
def load_data(pos=False, corpus_path='./corpus.txt'):
    # 调用上面方式对数据集进行处理,处理后的每条数据仅保留非干扰词
    doc_list = []
    for line in open(corpus_path, 'r',encoding='utf-8'):
        content = line.strip()
        seg_list = seg_to_list(content, pos)
        filter_list = word_filter(seg_list, pos)
        doc_list.append(filter_list)

    return doc_list


# idf值统计方法
def train_idf(doc_list):
    '''
    训练数据集生成对应的 IDF 值字典
    :param doc_list:
    :return:
    '''
    idf_dic = {}
    # 总文档数,可以理解为几个文档,或者几条评论等
    tt_count = len(doc_list)

    # 每个词出现的文档数
    for doc in doc_list:
        for word in set(doc):
            idf_dic[word] = idf_dic.get(word, 0.0) + 1.0

    # 按公式转换为idf值,分母加1进行平滑处理
    for k, v in idf_dic.items():
        idf_dic[k] = math.log(tt_count / (1.0 + v))

    # 对于没有在字典中的词,默认其仅在一个文档出现,得到默认idf值
    default_idf = math.log(tt_count / (1.0))
    return idf_dic, default_idf


def tfidf_extract(word_list, pos=False, keyword_num=10):
    # 训练 idf 值,根据已有文档
    doc_list = load_data(pos)
    idf_dic, default_idf = train_idf(doc_list)
    # 调用训练好的 idf 值对新文档计算 TF-IDF 值,选出排名靠前的词语
    tfidf_model = TfIdf(idf_dic, default_idf, word_list, keyword_num)
    tfidf_model.get_tfidf()

LSI_LDA.py

同样也是用现有数据文档 corpus.txt 训练后,再调用的

'''
LDA 为 LSI 的升级版
主题数,是需要先确定的
参考:https://mp.weixin.qq.com/s/xLLirpYs8QfyjQOrDkkg5A
'''
import math
import functools
import jieba
import jieba.posseg as psg
from gensim import corpora, models


# 主题模型
class TopicModel(object):
    # 三个传入参数:处理后的数据集,关键词数量,具体模型(LSI、LDA),主题数量
    def __init__(self, doc_list, keyword_num, model='LSI', num_topics=4):
        # 使用gensim的接口,将文本转为向量化表示
        # 先构建词空间
        self.dictionary = corpora.Dictionary(doc_list)
        # 使用BOW模型向量化
        corpus = [self.dictionary.doc2bow(doc) for doc in doc_list]
        # 对每个词,根据tf-idf进行加权,得到加权后的向量表示
        self.tfidf_model = models.TfidfModel(corpus)
        self.corpus_tfidf = self.tfidf_model[corpus]

        self.keyword_num = keyword_num
        self.num_topics = num_topics
        # 选择加载的模型
        if model == 'LSI':
            self.model = self.train_lsi()
        else:
            self.model = self.train_lda()

        # 得到数据集的主题-词分布
        word_dic = self.word_dictionary(doc_list)
        self.wordtopic_dic = self.get_wordtopic(word_dic)

    def train_lsi(self):
        lsi = models.LsiModel(self.corpus_tfidf, id2word=self.dictionary, num_topics=self.num_topics)
        return lsi

    def train_lda(self):
        lda = models.LdaModel(self.corpus_tfidf, id2word=self.dictionary, num_topics=self.num_topics)
        return lda

    def get_wordtopic(self, word_dic):
        wordtopic_dic = {}

        for word in word_dic:
            single_list = [word]
            wordcorpus = self.tfidf_model[self.dictionary.doc2bow(single_list)]
            wordtopic = self.model[wordcorpus]
            wordtopic_dic[word] = wordtopic
        return wordtopic_dic

    # 计算词的分布和文档的分布的相似度,取相似度最高的keyword_num个词作为关键词
    def get_simword(self, word_list):
        sentcorpus = self.tfidf_model[self.dictionary.doc2bow(word_list)]
        senttopic = self.model[sentcorpus]

        # 余弦相似度计算
        def calsim(l1, l2):
            a, b, c = 0.0, 0.0, 0.0
            for t1, t2 in zip(l1, l2):
                x1 = t1[1]
                x2 = t2[1]
                a += x1 * x1
                b += x1 * x1
                c += x2 * x2
            sim = a / math.sqrt(b * c) if not (b * c) == 0.0 else 0.0
            return sim

        # 计算输入文本和每个词的主题分布相似度
        sim_dic = {}
        for k, v in self.wordtopic_dic.items():
            if k not in word_list:
                continue
            sim = calsim(v, senttopic)
            sim_dic[k] = sim

        for k, v in sorted(sim_dic.items(), key=functools.cmp_to_key(cmp), reverse=True)[:self.keyword_num]:
            print(k + "/ ", end='')
        print()

    # 词空间构建方法和向量化方法,在没有gensim接口时的一般处理方法
    def word_dictionary(self, doc_list):
        dictionary = []
        for doc in doc_list:
            dictionary.extend(doc)

        dictionary = list(set(dictionary))

        return dictionary

    def doc2bowvec(self, word_list):
        vec_list = [1 if word in word_list else 0 for word in self.dictionary]
        return vec_list


#  排序函数,用于topK关键词的按值排序
def cmp(e1, e2):
    import numpy as np
    res = np.sign(e1[1] - e2[1])
    if res != 0:
        return res
    else:
        a = e1[0] + e2[0]
        b = e2[0] + e1[0]
        if a > b:
            return 1
        elif a == b:
            return 0
        else:
            return -1


# 停用词表加载方法
def get_stopword_list():
    # 停用词表存储路径,每一行为一个词,按行读取进行加载
    # 进行编码转换确保匹配准确率
    stop_word_path = './stopword.txt'
    stopword_list = [sw.replace('\n', '') for sw in open(stop_word_path,encoding='utf-8').readlines()]
    return stopword_list


# 分词方法,调用结巴接口
def seg_to_list(sentence, pos=False):
    if not pos:
        # 不进行词性标注的分词方法
        seg_list = jieba.cut(sentence)
    else:
        # 进行词性标注的分词方法
        seg_list = psg.cut(sentence)
    return seg_list


# 去除干扰词
def word_filter(seg_list, pos=False):
    '''
    根据分词结果对干扰词进行过滤
    :param seg_list:
    :param pos: 判断是否过滤除名词外的其他词性
    :return:
    '''
    stopword_list = get_stopword_list()
    filter_list = []
    # 根据POS参数选择是否词性过滤
    ## 不进行词性过滤,则将词性都标记为n,表示全部保留
    for seg in seg_list:
        if not pos:
            word = seg
            flag = 'n'
        else:
            word = seg.word
            flag = seg.flag
        if not flag.startswith('n'):
            continue
        # 过滤停用词表中的词,以及长度为<2的词
        if not word in stopword_list and len(word) > 1:
            filter_list.append(word)

    return filter_list


# 数据加载,pos为是否词性标注的参数,corpus_path为数据集路径
def load_data(pos=False, corpus_path='./corpus.txt'):
    # 调用上面方式对数据集进行处理,处理后的每条数据仅保留非干扰词
    doc_list = []
    for line in open(corpus_path, 'r',encoding='utf-8'):
        content = line.strip()
        seg_list = seg_to_list(content, pos)
        filter_list = word_filter(seg_list, pos)
        doc_list.append(filter_list)

    return doc_list


def topic_extract(word_list, model, pos=False, keyword_num=10):
    doc_list = load_data(pos)
    topic_model = TopicModel(doc_list, keyword_num, model=model)
    topic_model.get_simword(word_list)

结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1474964.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

132 Linux 系统编程9 ,IO操作,lseek 函数,truncate函数,查看文件的表示形式 od -tcx filename

一 lseek 函数 函数说明&#xff1a;此函数用于文件偏移 Linux中可使用系统函数lseek来修改文件偏移量(读写位置) 每个打开的文件都记录着当前读写位置&#xff0c;打开文件时读写位置是0&#xff0c;表示文件开头&#xff0c;通常读写多少个字节就会将读写位置往后移多少个字…

数仓项目6.0(二)数仓

中间的几步意义就在于&#xff0c;缓存中间处理数据样式&#xff0c;避免重复计算浪费算力 分层 ODS&#xff08;Operate Data Store&#xff09; Spark计算过程中&#xff0c;存在shuffle的操作&#xff0c;而shuffle会将计算过程一分为二&#xff0c;前一阶段不执行完&…

使用Node.js开发一个文件上传功能

在现代 Web 应用程序开发中&#xff0c;文件上传是一个非常常见且重要的功能。今天我们将通过 Node.js 来开发一个简单而强大的文件上传功能。使用 Node.js 来处理文件上传可以带来许多好处&#xff0c;包括简单的代码实现、高效的性能和灵活的配置选项。 首先&#xff0c;我们…

32单片机基础:TIM定时中断

STM32中功能最强大&#xff0c;结构最复杂的一个外设——定时器 因为定时器的内容很多&#xff0c;所以本大节总共分为4个部分&#xff0c;8小节。 第一部分&#xff1a;主要讲定时器基本的定时功能,也就是定一个时间&#xff0c;然后让定时器每隔这个时间产生一个中断&#…

el-table 多选表格存在分页,编辑再次操作勾选会丢失原来选中的数据

el-table表格多选时&#xff0c;只需要添加type"selection"&#xff0c; row-key及selection-change&#xff0c;如果存在分页时需要加上reserve-selection&#xff0c;这里就不写具体的实现方法了&#xff0c;可以查看我之前的文章&#xff0c;这篇文章主要说一下存…

NR 2-STEP RA Absolute Timing Advance Command MAC CE的应用场景

3 GPP在 R2-2002413中将2-step RA引入&#xff0c;进而R16 38.321出现了 Absolute TAC MAC CE&#xff0c;在 NR Timing Advance(TA)_ntn rrc-CSDN博客 有提到这个MAC CE&#xff0c;当时以“absolute timing advance command MAC CE 在2-step RA的某个场景下使用”一笔带过&am…

【计算机网络】一些乱七八糟内容

MAC Media Access Control 用于在局域网&#xff08;LAN&#xff09;或广域网&#xff08;WAN&#xff09;中实现设备自动接入网络 "载波侦听多路访问"(Carrier Sense Multiple Access) CSMA/CD 是CSMA的升级版本&#xff0c;加入了序列号检测机制。 CSMA/CA 是CSM…

代码随想录算法训练营day24

题目&#xff1a;77. 组合 参考链接&#xff1a;代码随想录 回溯法理论基础 回溯三部曲&#xff1a;回溯函数模板返回值以及参数、回溯函数终止条件、回溯搜索的遍历过程。 模板框架&#xff1a; void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择&…

javaWeb个人学习02

会话技术 会话: 用户打开浏览器,访问web服务器的资源,会话建立,直到有一方断开连接,会话结束.在一次会话中包含多次请求和响应 会话跟踪: 一种维护浏览器状态的方法,服务器需要识别多次请求是否来自于同一个浏览器,以便在同一次会话的多次请求之间共享数据 会话跟踪方案: …

【MATLAB源码-第151期】基于matlab的开普勒化算法(KOA)无人机三维路径规划,输出做短路径图和适应度曲线。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 开普勒优化算法&#xff08;Kepler Optimization Algorithm, KOA&#xff09;是一个虚构的、灵感来自天文学的优化算法&#xff0c;它借鉴了开普勒行星运动定律的概念来设计。在这个构想中&#xff0c;算法模仿行星围绕太阳的…

【数据结构】OJ面试题《设计循环队列》(题库+代码)

1.前言 本题需要结构体和数组的知识&#xff0c;记录每天的刷题&#xff0c;继续坚持&#xff01; 2.OJ题目训练 设计循环队列 设计你的循环队列实现。 循环队列是一种线性数据结构&#xff0c;其操作表现基于 FIFO&#xff08;先进先出&#xff09;原则并且队尾被连接在队…

备战蓝桥杯————如何判断回文链表

如何判断回文链表 题目描述 给你一个单链表的头节点 head &#xff0c;请你判断该链表是否为回文链表。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,2,1] 输出&#xff1a;true示例 2&#xff1a;…

备考2024年高考全国甲卷理科数学:历年填空题真题练一练

距离2024年高考还有三个多月的时间&#xff0c;今天我们来看一下2016~2023年全国甲卷高考理科数学的填空题真题&#xff0c;从历年真题中随机抽取5道题&#xff0c;并且提供解析。后附六分成长独家制作的在线练习集&#xff0c;科学、高效地反复刷这些真题&#xff0c;吃透真题…

WPF 【十月的寒流】学习笔记(3):DataGrid分页

文章目录 前言相关链接代码仓库项目配置&#xff08;省略&#xff09;项目初始配置xamlviewModel Filter过滤详细代码展示结果问题 Linq过滤CollectionDataxamlviewModel sql&#xff0c;这里用到数据库&#xff0c;就不展开了 总结 前言 我们这次详细了解一下列表通知的底层是…

ubuntu+QT+ OpenGL环境搭建和绘图

一&#xff0c;安装OpenGL库 安装OpenGL依赖项&#xff1a;运行sudo apt install libgl1-mesa-glx命令安装OpenGL所需的一些依赖项。 安装OpenGL头文件&#xff1a;运行sudo apt install libgl1-mesa-dev命令来安装OpenGL的头文件。 安装GLUT库&#xff1a;GLUT&#xff08;Ope…

PostgreSQL中int类型达到上限的一些处理方案

使用int类型作为表的主键在pg中是很常见的情况&#xff0c;但是pg中int类型的范围在-2147483648到2147483647&#xff0c;最大只有21亿&#xff0c;这个在一些大表中很容易就会达到上限。一旦达到上限&#xff0c;那么表中便没办法在插入数据了&#xff0c;这个将会是很严重的问…

服务网格Service Mesh和Istio

文章目录 服务网格&#xff08;Service Mesh&#xff09;市场上三种服务网格解决方案服务网格的特征流量管理安全性可观察性 Istio简介Istio提供了什么功能服务 &#xff1f;Istio 核心特性流量管理安全可观察性 平台支持 服务网格&#xff08;Service Mesh&#xff09; 服务网…

Flutter中高级JSON处理:使用json_serializable进行深入定制

Flutter中高级JSON处理 使用json_serializable库进行深入定制 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at: https://jclee95.blog.csdn.netEmail: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/qq_28550263/article/details/1363…

顶顶通呼叫中心中间件-如何使处于机器人话术中的通话手动转接到坐席分机上讲解(mod_cti基于FreeSWITCH)

顶顶通呼叫中心中间件使用httpapi实现电话转接操作过程讲解(mod_cti基于FreeSWITCH) 需要了解呼叫中心中间件可以点以下链接了解顶顶通小孙 1、使用httpapi接口转接 一、打开web版的ccadmin并且找到接口测试 打开web-ccadmin并且登录&#xff0c;登录完成之后点击运维调试-再…

在Arcgis中删除过滤Openstreetmap道路属性表中指定highway类型道路

一、导出道路类型并分析 1. 导出道路类型 选中highway属性列&#xff0c;选择汇总→确定 2. 分析 用Excel打开输出表&#xff0c;包含的道路类型如下 0.空值’’ 车辆可行驶道路&#xff08;和bfmap的并集&#xff09; 空值&#xff08;无定义道路&#xff09; 二、…