文献速递:深度学习--深度学习方法用于帕金森病的脑电图诊断

news2025/2/26 23:06:06

文献速递:深度学习–深度学习方法用于帕金森病的脑电图诊断

01

文献速递介绍

人类大脑在出生时含有最多的神经细胞,也称为神经元。这些神经细胞无法像我们身体的其他细胞那样自我修复。随着年龄的增长,神经元逐渐死亡,因此变得无法替代。PD(帕金森病)通常随着神经元的死亡而发生。神经元产生一种称为多巴胺的化学物质,其主要功能是控制身体的运动。因此,随着神经元的死亡,大脑中产生的多巴胺量减少。结果,这种神经系统状况开始非常缓慢地发生,并影响大脑中的各种通信方式。已观察到大约50岁或更老的人被诊断出患有PD。这种疾病的主要症状包括不稳定的姿势、肌肉僵硬、动作缓慢、震颤、平衡失调和精细运动技能受损。根据世界卫生组织提供的统计数据,这种疾病已经影响了近1000万人。在未观察到明显的运动或非运动症状时,诊断这种疾病存在困难。因此,计算机辅助诊断(CAD)系统可能有助于早期检测任何异常。CAD系统是一种自动化检测系统,可以使用脑电图(EEG)信号客观地诊断PD。借助EEG,可以轻松识别大脑皮层和皮层下部分的功能。神经系统疾病如癫痫、精神分裂症、阿尔茨海默症也可以使用EEG信号确定。因此,在这项研究中,我们使用EEG信号开发了用于检测PD的CAD系统。

根据先前的研究,EEG信号是复杂和非线性的,因此许多线性特征提取方法无法准确描述这些信号。当EEG信号显示复杂性时,观察到PD的加重。这是因为EEG信号中存在非线性成分。因此,可以注意到,使用非线性特征提取技术在正常和PD EEG信号的区分中将是有用的。

然而,近年来在模式识别和自然语言处理的多个领域成功实施了机器学习的一个分支——深度学习。卷积神经网络(CNN)是研究者采用的最流行的深度学习形式之一。它允许通过数据训练,无需人工干预即可学习高级特征,不同于大多数传统的机器学习算法。据我们所知,这是第一篇利用深度CNN实施PD CAD系统的论文。我们实现了一个新颖的十三层深CNN来表征两个类别(PD和正常)。图1展示了所提出网络的架构。网络及每一层的详细信息在后续章节中介绍。

Title

题目

A deep learning approach for Parkinson’s disease diagnosis from EEG signals

深度学习方法用于帕金森病的脑电图诊断

Abstract

摘要

An automated detection system for Parkinson’s disease (PD) employing the convolutional neural network (CNN) is proposed in this study. PD is characterized by the gradual degradation of motor function in the brain. Since it is related to the brain abnormality, electroencephalogram (EEG) signals are usually considered for the early diagnosis. In this work, we have used the EEG signals of twenty PD and twenty normal subjects in this study. A thirteen-layer CNN architecture which can overcome the need for the conventional feature representation stages is implemented. The developed model has achieved a promising performance of 88.25% accuracy, 84.71% sensitivity, and 91.77% specificity. The developed

classification model is ready to be used on large population before installation of clinical usage.

本研究提出了一种使用卷积神经网络(CNN)的帕金森病(PD)自动检测系统。PD的特点是大脑运动功能逐渐退化。由于它与大脑异常有关,因此通常考虑使用脑电图(EEG)信号进行早期诊断。在这项工作中,我们使用了二十名PD患者和二十名正常受试者的EEG信号进行研究。实现了一种十三层的CNN架构,它可以克服传统特征表示阶段的需求。开发的模型达到了88.25%的准确率、84.71%的敏感性和91.77%的特异性的有希望的性能。开发的分类模型已经准备好在临床使用前在大型人群中使用。

**Results
**
结果

All the EEG signals were subjected to the proposed CNNmodel. The CNN network was designed in Python lan guage using Keras and was executed on a computer with a system configuration of two Intel Xeon 2.40 GHz (E5620)processors with a 24 GB random access memory.

The evaluation parameters, namely the accuracy, sen**sitivity, and specificity, were used. The best diagnostic performance is achieved wit the learning rate of 0.0001. The proposed CNN model yielded an accuracy of 88.25%, sensitivity, and specificity of 84.71% and 91.77%, respectively. Figures 3 and 4 show the performance of the model with and without dropout layer, respectively. It can be noted that without the dropout layer, there is a possi bility of overfitting of data. In Fig. 3, the accuracy of the training set does not differ much from the accuracy of the validation set, whereas, in Fig. 4, the accuracy of the val idation set performs a lot worse as compared to the training data.

Figure 5 shows the confusion matrix of our results. It can be observed that 11.34% of normal subjects are mis classified as PD and 11.51% of the PD EEG signals are wrongly categorized into the normal class.

所有EEG信号都被应用到了所提出的CNN模型中。该CNN网络是用Python语言通过Keras设计的,并在一台配置有两个Intel Xeon 2.40 GHz(E5620)处理器和24 GB随机访问内存的计算机上执行。

评估参数,即准确率、敏感性和特异性被使用。最佳的诊断性能是在学习率为0.0001时达到的。所提出的CNN模型取得了88.25%的准确率,以及84.71%的敏感性和91.77%的特异性。图3和图4分别展示了模型带有和不带有dropout层的性能。可以注意到,没有dropout层时,数据过拟合的可能性存在。在图3中,训练集的准确率与验证集的准确率相差不大,而在图4中,验证集的准确率与训练数据相比表现得更差。

图5展示了我们结果的混淆矩阵。可以观察到,11.34%的正常受试者被误分类为PD,而11.51%的PD EEG信号被错误地归类为正常类。

Conclusion

结论

An automated thirteen-layer CNN model to diagnose PD using EEG signals is proposed. Furthermore, this is the first study which implemented the deep learning concept to diagnose the PD using EEG signals. We have obtained an accuracy of 88.25%, sensitivity of 84.71%, and specificity of 91.77% despite the limited number of subjects. Based on the positive performances achieved, the presented model may be able to serve as a trusted and long-term tool to assist clinicians in PD diagnoses. In the future, authors propose to test the developed model with a huge number of subjects and also aim to detect the early stage of PD.

提出了一种自动化的十三层CNN模型,用于利用EEG信号诊断PD。此外,这是第一项将深度学习概念应用于使用EEG信号诊断PD的研究。尽管受试者数量有限,我们仍获得了88.25%的准确率、84.71%的敏感性和91.77%的特异性。基于所取得的积极表现,所展示的模型可能能够作为一个可信赖的和长期的工具,以协助临床医生诊断PD。未来,作者提议使用大量受试者测试开发的模型,并且还旨在检测PD的早期阶段。

Figure

图片

Fig. 1 The proposed CNN architecture

图 1 所提出的CNN架构

图片

Fig. 2 A sample of a normal and b PD EEG signal

图 2 a 正常和 b PD EEG信号的样本

图片

Fig. 3 Accuracy versus different epoch plot

图 3 准确率与不同轮次的关系图

图片

Fig. 4 Accuracy versus different epoch without dropout layer plot

图 4 没有dropout层时准确率与不同轮次的关系图

图片

Fig. 5 Confusion matrix of the proposed method

图 5 所提出方法的混淆矩阵

图片

Fig. 6 Web-based CAD system to diagnose PD

图 6 基于网络的CAD系统用于诊断PD

Table

图片

Table 1 Details of parameters belonging to different layers of the developed CNN model

表 1 开发的CNN模型不同层的参数详情

图片

Table 2 The summary of CADsystem developed using EEG signals to diagnose PD

表 2 使用EEG信号开发的CAD系统诊断PD的总结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1473639.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

袁庭新ES系列12节 | Elasticsearch高级查询操作

前言 上篇文章讲了关于Elasticsearch的基本查询操作。接下来袁老师为大家带来Elasticsearch高级查询部分相关的内容。Elasticsearch是基于JSON提供完整的查询DSL(Domain Specific Language:领域特定语言)来定义查询。因此,我们有…

Python实现自动检测设备连通性并发送告警到企业微信

背景:门禁机器使用的WiFi连接,因为某些原因会不定期自动断开连接,需要人工及时干预,以免影响门禁数据同步,故写此脚本,定时检测门禁网络联通性。 #首次使用要安装tcping模块 pip install tcpingfrom tcpin…

幻兽帕鲁服务器哪家便宜?阿里云腾讯云京东云华为云对比

幻兽帕鲁服务器哪家便宜?阿里云腾讯云京东云华为云对比,阿里云更便宜,26元1个月。游戏服务器租用多少钱一年?1个月游戏服务器费用多少?阿里云游戏服务器26元1个月、腾讯云游戏服务器32元,华为云26元&#x…

Android WebView访问网页+自动播放视频+自动全屏+切换横屏

一、引言 近期,我发现电视家、火星直播等在线看电视直播的软件都已倒闭,而我奶奶也再无法通过这些平台看电视了。她已六十多岁,快七十岁啦。这些平台的倒下对我来说其实没有多大的影响,但是对于文化不多的她而言,生活中…

常见需求:CSS 实现弧形卡片的 3 种方式

公众号:程序员白特,欢迎一起交流学习~ 原文作者:前端侦探 在平时开发中,有时候会碰到下面这种“弧形”样式,主要分为“内凹”和“外凸”两种类型,如下 该如何实现呢?或者想一下,有哪…

用 Pyinstaller 模块将 Python 程序打包成 exe 文件(全网最全面最详细,万字详述)

目录 一、打包前置知识 1.1 什么是 exe 可执行文件? 1.2 为什么要将 Python 程序打包为 exe 可执行文件? 1.3 为什么 Python 程序不能直接运行呢? 1.4 我们用什么来打包 Python 文件呢? 1.5 打包有哪几种分类呢&#xff1f…

Spring-Cloud-Gateway集成Sentinel限流

1&#xff09;gateway添加sentinel相关依赖 <spring-cloud.version>2021.0.1</spring-cloud.version> <spring-cloud-alibaba.version>2021.0.1.0</spring-cloud-alibaba.version><dependencies><!--gateway--><dependency><gro…

多模态表征—CLIP及中文版Chinese-CLIP:理论讲解、代码微调与论文阅读

我之前一直在使用CLIP/Chinese-CLIP&#xff0c;但并未进行过系统的疏导。这次正好可以详细解释一下。相比于CLIP模型&#xff0c;Chinese-CLIP更适合我们的应用和微调&#xff0c;因为原始的CLIP模型只支持英文&#xff0c;对于我们的中文应用来说不够友好。Chinese-CLIP很好地…

为什么要智慧公厕?智慧公厕是做什么的

在现代城市信息化建设进程中&#xff0c;公共卫生设施的建设与管理一直备受关注。而随着科技的迅速发展&#xff0c;智慧公厕作为一种新型的信息化公共设施&#xff0c;正逐渐走进人们的视野。本文以智慧智慧源头厂家广州中期科技有限公司&#xff0c;大量精品案例现场实景&…

【重要公告】BSV区块链协会宣布将启动多项动态安全增强措施

​​发表时间&#xff1a;2024年2月16日 2024年2月16日&#xff0c;瑞士楚格 - BSV区块链协议的管理机构BSV区块链协会&#xff08;以下简称“BSV协会”&#xff09;宣布对其运营模式实施全新的安全架构&#xff0c;其中包括引入网络访问规则和数字资产找回协议&#xff0c;以及…

【非递归版】归并排序算法(2)

目录 MergeSortNonR归并排序 非递归&归并排序VS快速排序 整体思想 图解分析​ 代码实现 时间复杂度 归并排序在硬盘上的应用&#xff08;外排序&#xff09; MergeSortNonR归并排序 前面的快速排序的非递归实现&#xff0c;我们借助栈实现。这里我们能否也借助栈去…

浅谈Unity内存管理

浅谈Unity内存管理 前言 很早之前记录的Unity内存相关的知识点&#xff0c;在此补充到博客上来。有什么不对的地方欢迎指正探讨。 内存概念 虚拟内存&#xff08;Virtual Memory&#xff09; 众所周知&#xff0c;物理内存就是插在计算机主板内存槽上的实际物理内存。 虚拟…

SAP中分包后续调整应用实例二(调减)

之前己写过一篇介绍过分包后续调整功能MB04的基本应用。当时的场景是某个原材料由于各方面原因&#xff08;比如没有维护到BOM中&#xff09;&#xff0c;在委外加工模式成品收货后&#xff0c;并没有消耗或少消耗&#xff0c;这时可以用该事务功能来补充消耗。在生产报工中的M…

redis八股

文章目录 数据类型字符串实现使用场景 List 列表实现使用场景 Hash 哈希实现使用场景 Set 集合实现使用场景 ZSet 有序集合实现使用场景 BitMap实现使用场景 Stream使用场景pubsub为什么不能作为消息队列 数据结构机制SDS 简单动态字符串压缩列表哈希表整数集合跳表quicklistli…

CleanMyMac2024永久免费mac电脑版本安装包下载

CleanMyMac 4 for Mac&#xff1a;细致入微的功能介绍&#xff0c;CleanMyMac 4 for Mac作为一款系统清理和优化工具&#xff0c;提供了丰富而细致的功能&#xff0c;旨在满足Mac用户在不同场景下的清理和优化需求。以下是对CleanMyMac 4功能的更加细化介绍&#xff1a; CleanM…

苍穹外卖 -- day10- Spring Task- 订单状态定时处理- WebSocket- 来单提醒- 客户催单

苍穹外卖-day10 功能实现&#xff1a;订单状态定时处理、来单提醒和客户催单 订单状态定时处理&#xff1a; 来单提醒&#xff1a; 客户催单&#xff1a; 1. Spring Task 1.1 介绍 Spring Task 是Spring框架提供的任务调度工具&#xff0c;可以按照约定的时间自动执行某个代…

CVE-2021–27065漏洞分析及复现

接着昨天的说 CVE-2021–27065 CVE-2021–27065是⼀个任意⽂件写⼊漏洞&#xff0c;它需要登陆的管理员账号权限才能触发。而CVE-2021–26855正好可以为我们提供了管理员账号权限。 登录管理员账号后,进入:服务器——>虚拟目录——>OAB 编辑OAB配置,在外部链接中写⼊s…

蜣螂优化算法DBO求解不闭合SD-MTSP,可以修改旅行商个数及起点(提供MATLAB代码)

一、蜣螂优化算法&#xff08;Dung beetle optimizer&#xff0c;DBO&#xff09; 蜣螂优化算法&#xff08;Dung beetle optimizer&#xff0c;DBO&#xff09;由Jiankai Xue和Bo Shen于2022年提出&#xff0c;该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁殖行为的启发所得…

【加密算法】AES对称加密算法简介

目录 前言 工作原理 SubBytes ShiftRows MixColumns AddRoundKey 应用场景 在Java中使用AES 加密和解密数据 注意事项和最佳实践 结论 前言 AES&#xff08;Advanced Encryption Standard&#xff09;是一种对称加密算法&#xff0c;它在密码学中被广泛应用。AES取代…

数学建模入门必看|关于2024第九届数维杯数学建模,你想知道的都在这里!

数维杯大学生数学建模挑战赛每年分为两场&#xff0c;每年上半年为数维杯国赛&#xff08;5月&#xff0c;俗称小国赛&#xff09;&#xff0c;下半年为数维杯国际赛(11月)&#xff0c;2023年第八届数维杯大学生数学建模挑战赛共有近1.4万名学生参赛&#xff0c;参赛队伍来自国…