Gemma谷歌(google)开源大模型微调实战(fintune gemma-2b)

news2024/11/24 10:25:07

Gemma-SFT

Gemma-SFT(谷歌, Google), gemma-2b/gemma-7b微调(transformers)/LORA(peft)/推理

项目地址

  • https://github.com/yongzhuo/gemma-sft
  • 全部weights要用fp32/tf32, 使用fp16微调十几或几十的步数后大概率loss=nan;(即便layer-norm是fp32也不行, LLaMA就没有这个问题, 原因暂时未知)

备注

1. 非常重要: 全部weights要用fp32/tf32, 使用fp16微调十几或几十的步数后大概率loss=nan;(即便layer-norm是fp32也不行, LLaMA就没有这个问题, 原因暂时未知)
2. transformers需要4.38及以上;
3. gemma词典大小为25w,多语言版本,包含繁/简体;
4. gemma网络架构同Llama, gemma-2b为18层网络, gemma-7b为28层网络; 
5. prompt:
   5.1 标准格式为: 
bos + input + eos + bos + output + eos
   5.2 prompt格式为: 
<start_of_turn>user
input<end_of_turn>
<start_of_turn>model
output<end_of_turn>

6 微调输入输出:
    输入:"<start_of_turn>user\n{问题}<end_of_turn>\n"
    输出:"<start_of_turn>model\n{答案}<end_of_turn>"
7 推理输入输出(assistant\n放置位置不同):
    输入:"<start_of_turn>user\n{问题}<end_of_turn>\n<start_of_turn>model\n"
    输出:"{答案}<end_of_turn>"
8. 网络各层名称
('model.embed_tokens.weight', torch.bfloat16, True)
......
('model.layers.17.self_attn.q_proj.weight', torch.bfloat16, True)
('model.layers.17.self_attn.k_proj.weight', torch.bfloat16, True)
('model.layers.17.self_attn.v_proj.weight', torch.bfloat16, True)
('model.layers.17.self_attn.o_proj.weight', torch.bfloat16, True)
('model.layers.17.mlp.gate_proj.weight', torch.bfloat16, True)
('model.layers.17.mlp.up_proj.weight', torch.bfloat16, True)
('model.layers.17.mlp.down_proj.weight', torch.bfloat16, True)
('model.layers.17.input_layernorm.weight', torch.bfloat16, True)
('model.layers.17.post_attention_layernorm.weight', torch.bfloat16, True)
......
('model.norm.weight', torch.bfloat16, True)
9. RuntimeError: unscale_() has already been called on this optimizer since the last update().
    微调语料太少导致的

环境配置

transformers>=4.38.1
torch>=1.13.1
safetensors>=0.4.1
accelerate==0.27.1
fsspec==2023.9.2
rouge==1.0.1
nltk==3.6.6
peft>=0.2.0
numpy
tqdm

微调

地址: gemma_sft/ft_gemma

配置: gemma_sft/ft_gemma/config.py
训练: python train.py
推理: python predict.py
验证: python evaluation.py
接口: python post_api.py

数据集-中文

  • https://huggingface.co/datasets/JosephusCheung/GuanacoDataset
  • https://huggingface.co/datasets/shareAI/shareGPT_cn
  • https://huggingface.co/datasets/Mutonix/RefGPT-Fact
  • https://huggingface.co/datasets/BAAI/COIG
  • https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM
  • https://github.com/carbonz0/alpaca-chinese-dataset
  • https://github.com/LianjiaTech/BELLE
  • https://github.com/PhoebusSi/Alpaca-CoT
  • https://github.com/Hello-SimpleAI/chatgpt-comparison-detection
  • https://github.com/yangjianxin1/Firefly
  • https://github.com/XueFuzhao/InstructionWild
  • https://github.com/OpenLMLab/MOSS
  • https://github.com/thu-coai/Safety-Prompts
  • https://github.com/LAION-AI/Open-Assistant
  • https://github.com/TigerResearch/TigerBot

参考/感谢

  • https://github.com/google/gemma_pytorch
  • https://huggingface.co/google/gemma-2b-it
  • https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
  • https://github.com/THUDM/ChatGLM-6B
  • https://github.com/THUDM/GLM
  • https://github.com/tatsu-lab/stanford_alpaca
  • https://github.com/LianjiaTech/BELLE
  • https://github.com/huggingface/peft
  • https://github.com/mymusise/ChatGLM-Tuning
  • https://github.com/bojone/bert4keras
  • trl
  • math23k

微调日志-advgen

在这里插入图片描述

推理日志-advgen

请输入:
类型#上衣*颜色#黑色*颜色#紫色*风格#性感*图案#字母*图案#文字*图案#线条*图案#刺绣*衣样式#卫衣*衣长#短款*衣袖型#落肩袖*衣款式#连帽
请稍等...
################################################################################################################################
{'instruction': '类型#上衣*颜色#黑色*颜色#紫色*风格#性感*图案#字母*图案#文字*图案#线条*图案#刺绣*衣样式#卫衣*衣长#短款*衣袖型#落肩袖*衣款式#连帽', 'input': '', 'output': ''}
tensor([[     2,  23055, 235345, 235502, 236524, 235287,  43972, 235345,  57988,
         235287,  43972, 235345, 124945, 235287,  60525, 235345, 135994, 235287,
         182148, 235345, 125156, 235287, 182148, 235345,  25047, 235287, 182148,
         235345, 179958, 235287, 182148, 235345, 237164, 240872, 235287, 236524,
          95243, 235345, 237587, 236524, 235287, 236524, 236045, 235345, 236809,
         236604, 235287, 236524, 237785, 235954, 235345, 236362, 238047, 237785,
         235287, 236524, 166242, 235345, 236557, 238229]])
一款个性吸睛的连帽服務卫衣,黑色系底色,增添了甜美小性感;经典的落肩短款版型,修饰出纤细的颈脖线条;个性时尚的连帽设计,搭配字母刺绣装饰,增添了甜美少女感;肩部的字母刺绣装饰,增添了时尚感,使整体更具特色;紫色的刺绣设计,丰富了视觉感,使整体更具个性。<eos>
请输入:
类型#上衣*风格#街头*图案#创意*衣样式#卫衣
请稍等...
################################################################################################################################
{'instruction': '类型#上衣*风格#街头*图案#创意*衣样式#卫衣', 'input': '', 'output': ''}
tensor([[     2,  23055, 235345, 235502, 236524, 235287,  60525, 235345, 218295,
         235287, 182148, 235345,  50259, 235287, 236524,  95243, 235345, 237587,
         236524]])
这一款卫衣采用经典的领口设计,不拘一格的设计,展现出街头风。领口的设计,不仅能够修饰脸型,还能够打造出精致的小脸,而且还能够起到遮挡口型的效果,让脸型更加小巧。领口处采用了创意的圆环装饰,让整个卫衣更加丰富,视觉上更加亮眼。卫衣采用宽大的版型设计,不挑人穿,即使是身材不那么好的人也能轻松驾驭。<eos>
请输入:

口的设计,不仅能够修饰脸型,还能够打造出精致的小脸,而且还能够起到遮挡口型的效果,让脸型更加小巧。领口处采用了创意的圆环装饰,让整个卫衣更加丰富,视觉上更加亮眼。卫衣采用宽大的版型设计,不挑人穿,即使是身材不那么好的人也能轻松驾驭。
请输入:



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1472905.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot/Java中OCR实现,集成Tess4J实现图片文字识别

场景 Tesseract Tesseract是一个开源的光学字符识别&#xff08;OCR&#xff09;引擎&#xff0c;它可以将图像中的文字转换为计算机可读的文本。 支持多种语言和书面语言&#xff0c;并且可以在命令行中执行。它是一个流行的开源OCR工具&#xff0c;可以在许多不同的操作系…

【Vue3】插槽使用和animate使用

插槽使用 插槽slot匿名插槽具名插槽插槽作用域简写 动态插槽transition动画组件自定义过渡class类名如何使用animate动画库组件动画生命周期appear transition- group过渡列表 插槽slot 插槽就是子组件中提供给父组件使用的一个占位符父组件可以在这个占位符智能填充任何模板代…

pytest-配置项目不同环境URL

pytest自动化中&#xff0c;在不同环境进行测试&#xff0c;可以将项目中的url单独抽取出来&#xff0c;通过pytest.ini配置文件实现&#xff08;类似postman中的“Environments”&#xff09; 使用步骤&#xff1a; 1&#xff09;安装pytest-base-url插件 pytest-base-url …

【Flink精讲】Flink状态及Checkpoint调优

RocksDB大状态调优 RocksDB 是基于 LSM Tree 实现的&#xff08;类似 HBase&#xff09; &#xff0c;写数据都是先缓存到内存中&#xff0c; 所以 RocksDB 的写请求效率比较高。 RocksDB 使用内存结合磁盘的方式来存储数据&#xff0c;每 次获取数据时&#xff0c;先从内存中 …

Mac下载安装配置运行MySQL

一、打开官网 MySQL :: Download MySQL Community Serverhttps://dev.mysql.com/downloads/mysql/ 1、根据自己的电脑版本下载相对应的MySQL版本&#xff0c;Mac分为ARM和X86两个不同的架构 ​ 不知道自己电脑是ARM还是X86的&#xff0c;如下操作进行查询 uname -a 我的电脑是…

2024年Apache DolphinScheduler RoadMap:引领开源调度系统的未来

非常欢迎大家来到Apache DolphinScheduler社区&#xff01;随着开源技术在全球范围内的快速发展&#xff0c;社区的贡献者 “同仁” 一直致力于构建一个强大而活跃的开源调度系统社区&#xff0c;为用户提供高效、可靠的任务调度和工作流管理解决方案。 在过去的一段时间里&…

代码随想录|学习工具分享

工具分享 画图 https://excalidraw.com/ 大家平时刷题可以用这个网站画草稿图帮助理解&#xff01;如果看题解很蒙或者思路不清晰的时候&#xff0c;跟着程序处理流程画一个图&#xff0c;90%的情况下都可以解决问题&#xff01; 数据结构可视化 https://www.cs.usfca.edu/…

【Java设计模式】一、工厂模式、建造者模式、原型设计模式

文章目录 1、简单工厂模式2、工厂方法模式3、抽象工厂模式4、建造者模式5、原型设计模式 设计模式即总结出来的一些最佳实现。23种设计模式可分为三大类&#xff1a; 创建型模式&#xff1a;隐藏了创建对象的过程&#xff0c;通过逻辑方法进行创建对象&#xff0c;而不是直接n…

逆序或者正序打印一个数的每一位数,递归实现(C语言)

从键盘上输入一个不多于5位&#xff08;包括5位&#xff09;的正整数&#xff0c;要求 &#xff08;1&#xff09;求出它是几位数&#xff1b;&#xff08;2&#xff09;分别输出每一位数字&#xff08;3&#xff09;按逆序输出各位数字 &#xff08;1&#xff09;求出它是几位…

Linux浅学笔记04

目录 Linux实用操作 Linux系统下载软件 yum命令 apt systemctl命令 ln命令 日期和时区 IP地址 主机名 网络传输-下载和网络请求 ping命令 wget命令 curl命令 网络传输-端口 进程 ps 命令 关闭进程命令&#xff1a; 主机状态监控命令 磁盘信息监控&#xff1a…

【MQ05】异常消息处理

异常消息处理 上节课我们已经学习到了消息的持久化和确认相关的内容。但是&#xff0c;光有这些还不行&#xff0c;如果我们的消费者出现问题了&#xff0c;无法确认&#xff0c;或者直接报错产生异常了&#xff0c;这些消息要怎么处理呢&#xff1f;直接丢弃&#xff1f;这就是…

深入理解计算机系统学习笔记

第三章 程序的机器级表示 3.2.1 机器级代码 对于机器级编程来说&#xff0c;其中两种抽象尤为重要。第一种是由捍令集体系结构或指令集架构&#xff08;Instruction Set Architecture, ISA)来定义机器级程序的 格式和行为&#xff0c;它定义了处理器状态、指令的格式&#xf…

在Ubuntu上为ARM 8处理器安装Python 3.10.4虚拟环境指南

在Ubuntu上为ARM 8处理器安装Python 3.10.4虚拟环境指南 安装Anaconda或Miniconda&#xff1a; 首先&#xff0c;您需要从官方网站下载适用于ARM架构的Anaconda或Miniconda安装包。下载完成后&#xff0c;在终端中使用bash Anaconda3-2019.10-Linux-armv8.sh&#xff08;文件…

将仓库A中的部分提交迁移到仓库B中

结论&#xff1a; 使用git format-patchgit am即可实现 使用场景&#xff1a; 例如仓库A这里有5个提交记录&#xff0c;commitid1, commitid2, commitid3, commitid4&#xff0c;commitid5 仓库B想用仓库A中提交的代码&#xff0c;手动改比较慢&#xff0c;当改动较多的时候…

2.26 Qt day4+5 纯净窗口移动+绘画事件+Qt实现TCP连接服务+Qt实现连接数据库

思维导图 Qt实现TCP连接 服务器端&#xff1a; widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include<QTcpServer>//服务器端类 #include<QTcpSocket>//客户端类 #include<QMessageBox>//消息对话框类 #include<QList>//链…

2024-02-26(Spark,kafka)

1.Spark SQL是Spark的一个模块&#xff0c;用于处理海量结构化数据 限定&#xff1a;结构化数据处理 RDD的数据开发中&#xff0c;结构化&#xff0c;非结构化&#xff0c;半结构化数据都能处理。 2.为什么要学习SparkSQL SparkSQL是非常成熟的海量结构化数据处理框架。 学…

实践航拍小目标检测,基于轻量级YOLOv8n开发构建无人机航拍场景下的小目标检测识别分析系统

关于无人机相关的场景在我们之前的博文也有一些比较早期的实践&#xff0c;感兴趣的话可以自行移步阅读即可&#xff1a; 《deepLabV3Plus实现无人机航拍目标分割识别系统》 《基于目标检测的无人机航拍场景下小目标检测实践》 《助力环保河道水质监测&#xff0c;基于yolov…

掌握ChatGPT润色绝技:什么是人工智能写作以及如何使用它来完成写作任务

如对AI写论文感兴趣&#xff0c;欢迎添加作者wx讨论 : ryan_2982 人工智能 (AI) 的出现开创了技术进步的新时代&#xff0c;彻底改变了包括写作和内容创作在内的各个行业。人工智能写作和人工智能提示已成为可以简化和增强写作任务的强大工具。在这篇博文中&#xff0c;我们将…

C++多线程学习09:并发队列

参考 链接&#xff1a;恋恋风辰官方博客 并发队列&线程安全栈 代码结构&#xff1a; 并发队列ThreadSafeQueue.h&#xff1a; #pragma once#include <mutex> #include <queue>template<typename T> class threadsafe_queue { private:mutable std::m…

深入理解Python中的JSON模块:基础大总结与实战代码解析【第102篇—JSON模块】

深入理解Python中的JSON模块&#xff1a;基础大总结与实战代码解析 在Python中&#xff0c;JSON&#xff08;JavaScript Object Notation&#xff09;模块是处理JSON数据的重要工具之一。JSON是一种轻量级的数据交换格式&#xff0c;广泛应用于Web开发、API通信等领域。本文将…