《Docker 简易速速上手小册》第9章 Docker 与持续集成(2024 最新版)

news2025/1/14 1:18:01

在这里插入图片描述

文章目录

  • 9.1 持续集成的基本概念
    • 9.1.1 重点基础知识
    • 9.1.2 重点案例:Python Web 应用的 CI 流程
    • 9.1.3 拓展案例 1:Python 数据分析项目的 CI
    • 9.1.4 拓展案例 2:Python 微服务的 CI/CD
  • 9.2 Docker 在 CI/CD 中的应用
    • 9.2.1 重点基础知识
    • 9.2.2 重点案例:Python 应用的 Docker CI/CD 流程
    • 9.2.3 拓展案例 1:Python 微服务的 Docker CI/CD
    • 9.2.4 拓展案例 2:Python 数据科学项目的 Docker CI/CD
  • 9.3 构建自动化测试环境
    • 9.3.1 重点基础知识
    • 9.3.2 重点案例:Python Web 应用的自动化测试
    • 9.3.3 拓展案例 1:Python 数据分析的自动化测试
    • 9.3.4 拓展案例 2:Python 微服务架构的集成测试

9.1 持续集成的基本概念

欢迎来到持续集成(CI)的世界,这是一种既神秘又实用的开发实践,用于提高软件质量和开发速度。让我们一起跳入这个世界,看看如何用 Python 和 Docker 来玩转 CI!

9.1.1 重点基础知识

当然,让我们深入探讨持续集成(CI)的核心概念,并理解 Docker 如何在这一过程中发挥关键作用。

持续集成(CI)的核心概念

  1. 代码仓库:所有代码和资源都存储在版本控制系统(如 Git)中。它允许团队成员协作,同时保持代码的一致性和历史记录。

  2. 频繁集成:持续集成鼓励开发人员频繁地将代码更改合并到主分支。这减少了集成冲突,使问题更易于发现和解决。

  3. 自动化构建:每次代码提交时,CI 系统会自动运行构建过程,这可能包括编译代码、打包应用等。

  4. 自动化测试:构建过程中包含自动化测试的运行,如单元测试、集成测试等,以确保新更改不会破坏现有功能。

  5. 快速反馈:如果构建或测试失败,CI 系统会立即通知开发团队,允许快速响应。

  6. 持续交付和部署:CI 是持续交付(CD)的基础。在持续交付中,每次成功的构建都准备好了部署到生产环境。

Docker 在 CI 中的角色

  1. 一致的环境:Docker 保证开发、测试和生产环境的一致性,解决了“在我机器上运行”的问题。

  2. 快速启动和可扩展性:Docker 容器的轻量级特性意味着它们可以快速启动和销毁,非常适合 CI 系统中的短暂任务。

  3. 可重复的构建:Docker 通过 Dockerfile 提供了一种声明式方法来定义构建过程,使之可重复且易于维护。

  4. 隔离和安全:Docker 容器在运行时是相互隔离的,这提供了安全性优势,特别是在多租户的 CI 系统中。

通过理解这些基础知识,我们可以更好地把握如何在现实生产环境中应用持续集成,并利用 Docker 的优势来提升开发流程的效率和可靠性。在接下来的案例中,我们将看到这些概念如何在具体的 Python 项目中得到应用。

9.1.2 重点案例:Python Web 应用的 CI 流程

让我们通过一个实际的例子来展示如何为一个使用 Flask 编写的 Python Web 应用实施 CI 流程。我们将使用 Docker 来创建一致的构建环境,并结合一个流行的 CI 工具(例如 Jenkins 或 Travis CI)来自动化构建和测试过程。

案例概述

我们的 Python Web 应用将包括基本的 Flask 功能和一些单元测试。我们将使用 Docker 容器化应用,并设置自动化构建和测试。

第一步:准备 Flask 应用

  1. 创建 Flask 应用

    • app.py:

      from flask import Flask
      
      app = Flask(__name__)
      
      @app.route('/')
      def hello():
          return 'Hello, Docker CI!'
      
      if __name__ == '__main__':
          app.run(host='0.0.0.0', port=5000)
      
    • requirements.txt:

      Flask==1.1.2
      
  2. 添加单元测试

    • test_app.py:

      import pytest
      from app import app
      
      @pytest.fixture
      def client():
          with app.test_client() as client:
              yield client
      
      def test_hello(client):
          rv = client.get('/')
          assert b'Hello, Docker CI!' in rv.data
      

第二步:创建 Dockerfile

  1. 编写 Dockerfile

    • Dockerfile:

      FROM python:3.8-slim
      WORKDIR /app
      COPY requirements.txt .
      RUN pip install -r requirements.txt
      COPY . .
      CMD ["python", "app.py"]
      

第三步:设置 CI 配置文件

  1. CI 配置文件:对于不同的 CI 工具,配置文件可能有所不同。以下是 Travis CI 的一个示例:

    • .travis.yml:

      language: python
      python:
        - "3.8"
      services:
        - docker
      script:
        - docker build -t python-web-app .
        - docker run -d -p 5000:5000 python-web-app
        - pytest
      

    这个配置告诉 Travis CI 如何构建 Docker 镜像,并运行容器和测试。

第四步:提交代码并观察 CI 流程

  1. 提交代码:将代码提交到版本控制系统(如 Git)。

  2. 观察 CI 流程:一旦代码被提交,CI 工具(如 Travis CI)将自动开始构建过程,运行 Docker 容器,并执行测试。

  3. 查看结果:在 CI 工具的控制面板上查看构建和测试的结果。

结论

通过这个案例,我们展示了如何为一个 Flask Web 应用设置 Docker 和 CI 流程。使用 Docker 保证了环境的一致性,而 CI 工具自动化了构建和测试的过程,从而提高了开发效率和代码质量。这种集成方法对于现代软件开发团队来说是非常有价值的,它确保了快速反馈和持续的质量改进。

9.1.3 拓展案例 1:Python 数据分析项目的 CI

让我们通过一个具体的例子来展示如何为一个使用 Python 进行数据分析的项目实施 CI 流程。这个项目将使用像 Pandas 这样的数据分析库,并通过自动化测试来保证数据处理的准确性。

案例概述

我们的数据分析项目将包含一些 Python 脚本,用于数据处理和分析。我们将使用 Docker 容器化环境,并结合 CI 工具自动化测试。

第一步:准备数据分析项目

  1. 创建数据处理脚本

    • data_analysis.py:

      import pandas as pd
      
      def data_analysis():
          # 示例数据分析过程
          data = pd.read_csv('data.csv')
          processed_data = data.describe()
          return processed_data
      
    • data.csv:一个示例 CSV 数据文件。

  2. 添加单元测试

    • test_data_analysis.py:

      import pytest
      from data_analysis import data_analysis
      
      def test_data_analysis():
          result = data_analysis()
          assert not result.empty
      
    • requirements.txt:

      pandas==1.1.3
      pytest==6.1.1
      

第二步:创建 Dockerfile

  1. 编写 Dockerfile

    • Dockerfile:

      FROM python:3.8-slim
      WORKDIR /app
      COPY requirements.txt .
      RUN pip install -r requirements.txt
      COPY . .
      CMD ["pytest", "test_data_analysis.py"]
      

第三步:设置 CI 配置文件

  1. CI 配置文件:以下是一个适用于 Travis CI 的配置示例:

    • .travis.yml:

      language: python
      python:
        - "3.8"
      services:
        - docker
      script:
        - docker build -t python-data-analysis .
        - docker run python-data-analysis
      

    这个配置指导 Travis CI 如何构建 Docker 镜像,并运行包含数据分析测试的容器。

第四步:提交代码并观察 CI 流程

  1. 提交代码:将代码和配置文件提交到版本控制系统。

  2. 观察 CI 流程:提交后,CI 工具自动开始构建和测试过程。

  3. 查看结果:在 CI 工具的控制面板上查看构建和测试的结果。

结论

这个案例演示了如何为数据分析项目设置 Docker 和 CI 流程。这种方法不仅保证了环境的一致性,还通过自动化测试确保了数据处理逻辑的准确性。对于依赖数据准确性的项目来说,这种集成 CI 的方法极大提高了代码质量和项目的可靠性。

9.1.4 拓展案例 2:Python 微服务的 CI/CD

在这个案例中,我们将展示如何为基于微服务架构的 Python 应用实现 CI/CD 流程。我们假设应用由多个独立的微服务组成,每个服务都有自己的代码库、Dockerfile 和 CI/CD 流程。

案例概述

我们的应用包含两个微服务:

  1. 订单服务:处理订单逻辑的 Flask 应用。
  2. 支付服务:处理支付逻辑的 Flask 应用。

第一步:准备微服务

  1. 创建订单服务 (Flask 应用)

    • order_service/app.py:

      from flask import Flask, jsonify
      
      app = Flask(__name__)
      
      @app.route('/orders')
      def get_orders():
          # 示例订单数据
          return jsonify([{"id": 1, "total": 100}, {"id": 2, "total": 150}])
      
      if __name__ == '__main__':
          app.run(host='0.0.0.0', port=5000)
      
    • order_service/Dockerfile:

      FROM python:3.8-slim
      WORKDIR /app
      COPY requirements.txt .
      RUN pip install flask
      COPY . .
      CMD ["python", "app.py"]
      
  2. 创建支付服务

    • payment_service/app.py:

      from flask import Flask, jsonify
      
      app = Flask(__name__)
      
      @app.route('/payments')
      def get_payments():
          # 示例支付数据
          return jsonify([{"id": 1, "amount": 100}, {"id": 2, "amount": 150}])
      
      if __name__ == '__main__':
          app.run(host='0.0.0.0', port=5001)
      
    • payment_service/Dockerfile:

      FROM python:3.8-slim
      WORKDIR /app
      COPY requirements.txt .
      RUN pip install flask
      COPY . .
      CMD ["python", "app.py"]
      

第二步:设置 CI/CD 配置文件

  1. CI/CD 配置:每个服务都有自己的 CI/CD 配置,例如使用 GitHub Actions 或 Travis CI。

    • order_service/.github/workflows/main.yml (GitHub Actions 示例):

      name: Order Service CI/CD
      
      on:
        push:
          branches: [ main ]
          paths:
            - 'order_service/**'
      
      jobs:
        build-and-deploy:
          runs-on: ubuntu-latest
          steps:
            - uses: actions/checkout@v2
            - name: Build Docker image
              run: docker build -t order-service ./order_service
            # 添加更多步骤以进行测试和部署
      

    同样的设置也适用于支付服务,确保路径和服务名称相对应。

第三步:自动化构建、测试和部署

  1. 自动化构建:每次提交代码到服务的代码库时,CI/CD 工具自动构建服务的 Docker 镜像。

  2. 自动化测试:在构建过程中,运行单元测试和集成测试以确保代码更改不会破坏现有功能。

  3. 自动化部署:成功构建和测试后,CI/CD 工具自动将服务部署到指定的环境中。

结论

通过这个案例,我们展示了如何为基于微服务的 Python 应用设置独立的 CI/CD 流程。每个服务都可以独立地更新和部署,提高了整个应用的灵活性和可维护性。这种方法是现代云原生应用的标志,它使得团队能够快速迭代和部署新功能,同时保持高水平的代码质量和应用稳定性。

通过这些案例,我们可以看到 Docker 和 CI 如何联手提高软件开发的效率和质量。不论是简单的 Web 应用,复杂的数据分析项目,还是构建有多个微服务的大型系统,Docker 都能够提供快速、一致和可靠的构建和测试环境。

9.2 Docker 在 CI/CD 中的应用

在这一节中,我们将深入探讨 Docker 如何革新传统的 CI/CD 流程,使之更加高效和一致。Docker 不仅仅是一个工具,它是实现快速、可靠和可扩展的自动化流程的关键。

9.2.1 重点基础知识

当然,让我们更深入地探索 Docker 在 CI/CD 流程中的作用和重要性,并详细了解相关的基础知识。

Docker 与 CI/CD 的结合

  1. 环境标准化:Docker 允许你创建一个标准化的环境,这个环境可以在整个软件开发生命周期中使用,包括开发、测试和生产。这样做的好处是消除了环境不一致带来的“在我机器上运行”的问题。

  2. 构建的可重复性:Docker 镜像确保了构建的一致性和可重复性。无论何时构建镜像,你都会得到相同的环境和应用状态。

  3. 测试隔离:在 Docker 容器中运行测试可以提供一个隔离的环境,这意味着你可以同时运行多个测试实例而不会相互影响。

  4. 快速部署和回滚:Docker 容器可以迅速启动和停止,这使得部署和回滚变得更加高效。通过简单地切换到新的容器镜像,你可以快速部署新版本或在必要时回滚到旧版本。

  5. 简化配置管理:Docker 可以通过 Dockerfile 和环境变量管理应用配置,这减少了传统配置管理的复杂性。

Docker 镜像的自动化构建

  1. 自动化构建流程:在 CI 流程中,每次代码提交都会触发 Docker 镜像的自动化构建。这包括从代码库获取最新代码,构建新的镜像,并将镜像推送到镜像仓库。

  2. 缓存和层重用:Docker 利用缓存来加速构建过程。如果构建过程中的某些步骤未更改,则 Docker 会重用上一次构建的层,这显著减少了构建时间。

Docker 容器中的测试

  1. 一致的测试环境:Docker 容器提供了与生产环境几乎相同的测试环境。这意味着你可以在一个环境中开发和测试应用,然后将其部署到完全相同的生产环境中。

  2. 并行测试执行:Docker 容器的轻量级特性允许在相同的宿主机上同时运行多个容器。这使得并行执行多个测试套件成为可能,从而加快了测试过程。

通过理解这些基础知识,开发团队可以更有效地利用 Docker 来改进他们的 CI/CD 流程,实现更快的迭代和更可靠的应用交付。接下来的案例将展示这些概念在实际应用中的应用。

9.2.2 重点案例:Python 应用的 Docker CI/CD 流程

让我们通过一个实际的例子来展示如何为一个使用 Flask 编写的 Python 应用实施 Docker CI/CD 流程。我们将结合使用 Docker 和一个流行的 CI/CD 工具(如 Jenkins、GitHub Actions 或 Travis CI)来自动化构建、测试和部署过程。

案例概述

我们的 Python 应用将是一个简单的 Flask Web 应用。我们将使用 Docker 来容器化应用,并设置自动化的构建、测试和部署流程。

第一步:准备 Flask 应用

  1. 创建 Flask 应用

    • app.py:

      from flask import Flask
      
      app = Flask(__name__)
      
      @app.route('/')
      def index():
          return 'Hello, Docker CI/CD!'
      
      if __name__ == '__main__':
          app.run(host='0.0.0.0', port=5000)
      
    • requirements.txt:

      Flask==1.1.2
      
  2. 添加单元测试

    • test_app.py:

      import pytest
      from app import app
      
      @pytest.fixture
      def client():
          with app.test_client() as client:
              yield client
      
      def test_index(client):
          response = client.get('/')
          assert response.data == b'Hello, Docker CI/CD!'
      

第二步:创建 Dockerfile

  1. 编写 Dockerfile

    • Dockerfile:

      FROM python:3.8-slim
      WORKDIR /app
      COPY requirements.txt .
      RUN pip install -r requirements.txt
      COPY . .
      CMD ["python", "app.py"]
      

第三步:设置 CI/CD 配置

  1. CI/CD 配置文件:根据所选的 CI/CD 工具,创建相应的配置文件。

    • 以 GitHub Actions 为例的 .github/workflows/ci-cd.yml:

      name: Python Flask Docker CI/CD
      
      on:
        push:
          branches: [ main ]
      
      jobs:
        build:
          runs-on: ubuntu-latest
          steps:
            - uses: actions/checkout@v2
            - name: Build Docker image
              run: docker build -t python-flask-app .
            - name: Run Tests
              run: docker run python-flask-app pytest
            # 添加部署步骤
      

    此配置定义了一个工作流,包括构建 Docker 镜像和运行测试的步骤。

第四步:代码提交和自动化流程

  1. 提交代码:将 Flask 应用代码、Dockerfile 和 CI/CD 配置文件提交到版本控制系统。

  2. 观察自动化流程:每次代码提交后,CI/CD 工具会自动开始构建和测试过程。

  3. 部署:在测试通过后,添加部署步骤将应用自动部署到目标环境,如云服务器或 Kubernetes 集群。

结论

这个案例展示了如何为 Flask Web 应用设置 Docker 和 CI/CD 流程。使用 Docker 保证了环境的一致性,而 CI/CD 工具自动化了构建和测试的过程,从而提高了开发效率和代码质量。这种集成方法对于现代软件开发团队来说是非常有价值的,它确保了快速反馈和持续的质量改进。

9.2.3 拓展案例 1:Python 微服务的 Docker CI/CD

在这个案例中,我们将展示如何为基于微服务架构的 Python 应用实现 Docker CI/CD 流程。我们假设应用由多个独立的微服务组成,每个服务都有自己的代码库、Dockerfile 和 CI/CD 流程。

案例概述

我们的应用包含两个微服务:

  1. 用户服务:处理用户相关逻辑的 Flask 应用。
  2. 产品服务:处理产品信息的 Flask 应用。

第一步:准备微服务

  1. 创建用户服务 (Flask 应用)

    • user_service/app.py:

      from flask import Flask, jsonify
      
      app = Flask(__name__)
      
      @app.route('/users')
      def get_users():
          return jsonify([{"id": 1, "name": "John"}, {"id": 2, "name": "Jane"}])
      
      if __name__ == '__main__':
          app.run(host='0.0.0.0', port=5000)
      
    • user_service/Dockerfile:

      FROM python:3.8-slim
      WORKDIR /app
      COPY requirements.txt .
      RUN pip install flask
      COPY . .
      CMD ["python", "app.py"]
      
  2. 创建产品服务

    • product_service/app.py:

      from flask import Flask, jsonify
      
      app = Flask(__name__)
      
      @app.route('/products')
      def get_products():
          return jsonify([{"id": 1, "name": "Product A"}, {"id": 2, "name": "Product B"}])
      
      if __name__ == '__main__':
          app.run(host='0.0.0.0', port=5001)
      
    • product_service/Dockerfile:

      FROM python:3.8-slim
      WORKDIR /app
      COPY requirements.txt .
      RUN pip install flask
      COPY . .
      CMD ["python", "app.py"]
      

第二步:设置 CI/CD 配置

  1. CI/CD 配置文件:为每个服务设置 CI/CD 流程,例如使用 GitHub Actions。

    • user_service/.github/workflows/ci-cd.yml:

      name: User Service CI/CD
      
      on:
        push:
          paths:
            - 'user_service/**'
      
      jobs:
        build-and-deploy:
          runs-on: ubuntu-latest
          steps:
            - uses: actions/checkout@v2
            - name: Build Docker image
              run: docker build -t user-service ./user_service
            # 添加测试和部署步骤
      

    同样的配置适用于产品服务,确保路径和服务名称相对应。

第三步:自动化构建、测试和部署

  1. 自动化构建:提交到各个服务的代码库时,相应的 CI 工具自动构建服务的 Docker 镜像。

  2. 自动化测试:在构建过程中,运行单元测试和集成测试,确保代码更改不会破坏现有功能。

  3. 自动化部署:成功构建和测试后,CI 工具自动将服务部署到指定环境。

结论

这个案例演示了如何为基于微服务的 Python 应用设置 Docker 和 CI/CD 流程。这种方法使得每个服务可以独立地更新和部署,提高了整体应用的灵活性和可维护性。对于现代云原生应用,这种方法能够加快迭代速度,提高应用的稳定性和可靠性。

9.2.4 拓展案例 2:Python 数据科学项目的 Docker CI/CD

在这个案例中,我们将探讨如何为一个涉及数据科学的 Python 项目实现 Docker CI/CD 流程。这个项目将使用诸如 Pandas、NumPy、Scikit-learn 等库进行数据处理和机器学习。

案例概述

我们的数据科学项目包含数据处理、分析以及机器学习模型的训练和评估。我们将使用 Docker 来容器化环境,并通过 CI/CD 工具自动化测试和部署流程。

第一步:准备数据科学项目

  1. 创建数据处理和分析脚本

    • data_science_project/main.py:

      import pandas as pd
      from sklearn.ensemble import RandomForestClassifier
      from sklearn.model_selection import train_test_split
      from sklearn.metrics import accuracy_score
      
      # 示例数据处理和模型训练
      def train_model():
          data = pd.read_csv('dataset.csv')
          X = data.drop('target', axis=1)
          y = data['target']
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
          clf = RandomForestClassifier()
          clf.fit(X_train, y_train)
          predictions = clf.predict(X_test)
          print(f"Accuracy: {accuracy_score(y_test, predictions)}")
      
      if __name__ == "__main__":
          train_model()
      
    • data_science_project/requirements.txt:

      pandas
      scikit-learn
      
  2. 添加测试脚本

    • data_science_project/test_main.py:

      from main import train_model
      
      def test_train_model():
          # 假设的测试用例
          train_model()
          assert True  # 添加适当的断言
      

第二步:创建 Dockerfile

  1. 编写 Dockerfile

    • data_science_project/Dockerfile:

      FROM python:3.8-slim
      WORKDIR /app
      COPY requirements.txt .
      RUN pip install -r requirements.txt
      COPY . .
      CMD ["python", "main.py"]
      

第三步:设置 CI/CD 配置

  1. CI/CD 配置文件:使用 GitHub Actions 或其他 CI/CD 工具。

    • data_science_project/.github/workflows/ci-cd.yml:

      name: Data Science Project CI/CD
      
      on:
        push:
          paths:
            - 'data_science_project/**'
      
      jobs:
        build-and-test:
          runs-on: ubuntu-latest
          steps:
            - uses: actions/checkout@v2
            - name: Build Docker image
              run: docker build -t data-science-project ./data_science_project
            - name: Run Tests
              run: docker run data-science-project pytest
      

    这个配置定义了构建 Docker 镜像和运行测试的工作流。

第四步:自动化构建、测试和部署

  1. 自动化构建:代码提交后,CI 工具自动构建 Docker 镜像。

  2. 自动化测试:构建过程中运行单元测试,以确保数据处理和模型训练的准确性。

  3. 自动化部署:成功测试后,自动将模型或分析结果部署到生产环境或数据仓库。

结论

这个案例展示了如何为数据科学项目设置 Docker 和 CI/CD 流程。通过容器化,我们确保了环境的一致性,而 CI/CD 流程自动化了测试和部署,提高了项目的可靠性和效率。这种方法对于数据科学项目来说非常有价值,它允许团队快速迭代并保持数据处理和分析的高标准。

通过以上案例,我们可以看到 Docker 在 CI/CD 流程中的强大作用。无论是简单的 Web 应用,复杂的微服务架构,还是数据密集型的数据科学项目,Docker 都提供了一种高效、一致且可靠的方式来实现自动化构建、测试和部署。

9.3 构建自动化测试环境

在这一节中,我们将探讨如何使用 Docker 构建一个自动化的测试环境,特别是针对使用 Python 开发的应用程序。自动化测试是确保软件质量的关键环节,Docker 可以在这方面发挥重要作用。

9.3.1 重点基础知识

  1. 测试环境与生产环境隔离:在自动化测试中,非常重要的一点是确保测试环境与生产环境相隔离。使用 Docker,你可以在与生产环境相似但完全隔离的容器中运行测试,这有助于避免测试依赖污染生产环境。

  2. 测试数据管理:自动化测试通常需要使用到测试数据。Docker 可以通过数据卷或特定的数据容器来管理测试数据,确保数据的一致性和可重用性。

  3. 服务模拟和 Mocking:在进行集成测试或单元测试时,可能需要模拟外部服务或数据库。Docker 容器可以用来模拟这些外部依赖,提供更全面的测试覆盖。

  4. 自动化测试流程:自动化测试不仅限于运行测试脚本。它还包括设置测试环境、初始化测试数据、执行测试、收集测试结果和清理测试环境等步骤。Docker 可以简化这些步骤,使得整个流程更加高效。

  5. 持续集成(CI)与测试自动化:在 CI 流程中,自动化测试是核心部分。每次代码提交都会触发自动化的构建和测试流程,Docker 在这个过程中用于创建标准化的测试环境。

通过理解这些扩展的基础知识,开发团队可以更有效地利用 Docker 来构建强大的自动化测试环境,提高软件质量和开发效率。接下来的案例将展示这些概念在具体项目中的应用。

9.3.2 重点案例:Python Web 应用的自动化测试

让我们通过一个具体的示例来展示如何为一个使用 Flask 编写的 Python Web 应用设置自动化测试环境。

案例概述

我们将创建一个简单的 Flask 应用,并编写单元测试。接着,我们使用 Docker 来容器化应用和测试环境,并通过一个 CI 工具(如 GitHub Actions)自动化测试流程。

第一步:准备 Flask 应用和测试

  1. 创建 Flask 应用

    • app.py:

      from flask import Flask
      
      app = Flask(__name__)
      
      @app.route('/')
      def index():
          return 'Hello, Dockerized Tests!'
      
      if __name__ == '__main__':
          app.run(host='0.0.0.0', port=5000)
      
    • requirements.txt:

      Flask==1.1.2
      pytest==6.2.2
      
  2. 添加单元测试

    • test_app.py:

      import pytest
      from app import app
      
      @pytest.fixture
      def client():
          with app.test_client() as client:
              yield client
      
      def test_index(client):
          response = client.get('/')
          assert b'Hello, Dockerized Tests!' in response.data
      

第二步:创建 Dockerfile

  1. 编写 Dockerfile

    • Dockerfile:

      FROM python:3.8-slim
      WORKDIR /app
      COPY requirements.txt .
      RUN pip install -r requirements.txt
      COPY . .
      CMD ["pytest", "test_app.py"]
      

第三步:配置 CI 工具

  1. CI 配置文件:这里以 GitHub Actions 为例。

    • .github/workflows/python-test.yml:

      name: Python Flask Test
      
      on: [push]
      
      jobs:
        build:
          runs-on: ubuntu-latest
      
          steps:
          - uses: actions/checkout@v2
          - name: Build Docker image
            run: docker build -t my-python-app .
          - name: Run tests
            run: docker run my-python-app
      

第四步:提交代码并观察自动化测试流程

  1. 提交代码:将 Flask 应用代码、测试代码、Dockerfile 和 GitHub Actions 配置文件提交到 Git 仓库。

  2. 观察自动化测试:每次代码提交后,GitHub Actions 会自动运行 Docker 构建和测试流程。

  3. 查看测试结果:在 GitHub 仓库的 Actions 选项卡中查看测试结果。

结论

通过这个案例,我们展示了如何为 Flask Web 应用设置 Docker 和 CI 工具来实现自动化测试。这种方法确保了测试环境的一致性和测试流程的自动化,大大提高了软件质量和开发效率。

9.3.3 拓展案例 1:Python 数据分析的自动化测试

在这个案例中,我们将展示如何为涉及数据处理和分析的 Python 项目设置自动化测试环境,使用诸如 Pandas 和 NumPy 这样的库。

案例概述

假设我们有一个 Python 项目,它使用 Pandas 进行数据处理和分析。我们将编写测试来验证数据处理逻辑的正确性,并使用 Docker 来创建一个自动化的测试环境。

第一步:准备数据处理和分析代码

  1. 创建数据处理脚本

    • data_processing.py:

      import pandas as pd
      
      def process_data():
          data = pd.read_csv('data.csv')
          processed_data = data.describe()
          return processed_data
      
    • data.csv:一个示例 CSV 数据文件。

  2. 添加单元测试

    • test_data_processing.py:

      import pytest
      from data_processing import process_data
      
      def test_process_data():
          result = process_data()
          assert not result.empty  # 确保处理后的数据不为空
      
    • requirements.txt:

      pandas==1.1.3
      pytest==6.2.2
      

第二步:创建 Dockerfile

  1. 编写 Dockerfile

    • Dockerfile:

      FROM python:3.8-slim
      WORKDIR /app
      COPY requirements.txt .
      RUN pip install -r requirements.txt
      COPY . .
      CMD ["pytest", "test_data_processing.py"]
      

第三步:配置 CI 工具

  1. CI 配置文件:这里我们以 GitHub Actions 为例。

    • .github/workflows/python-data-test.yml:

      name: Python Data Processing Test
      
      on: [push]
      
      jobs:
        build:
          runs-on: ubuntu-latest
      
          steps:
          - uses: actions/checkout@v2
          - name: Build Docker image
            run: docker build -t my-python-data-app .
          - name: Run tests
            run: docker run my-python-data-app
      

第四步:提交代码并观察自动化测试流程

  1. 提交代码:将 Python 脚本、测试文件、Dockerfile 和 GitHub Actions 配置文件提交到 Git 仓库。

  2. 观察自动化测试:每次代码提交后,GitHub Actions 会自动运行 Docker 构建和测试流程。

  3. 查看测试结果:在 GitHub 仓库的 Actions 选项卡中查看测试结果。

结论

通过这个案例,我们展示了如何为涉及复杂数据处理的 Python 项目设置 Docker 和自动化测试。这种方法确保了测试环境的一致性,使得测试过程自动化,有助于提高数据处理逻辑的准确性和可靠性。

9.3.4 拓展案例 2:Python 微服务架构的集成测试

在这个案例中,我们将展示如何为基于微服务架构的 Python 应用设置集成测试环境。我们假设应用由多个互相交互的微服务组成,每个服务都有自己的 Docker 容器。

案例概述

假设我们的应用包含两个微服务:

  1. 订单服务:处理订单相关逻辑的 Flask 应用。
  2. 库存服务:管理库存信息的 Flask 应用。

我们将使用 Docker Compose 来编排这些服务,并设置集成测试以验证它们之间的交互。

第一步:准备微服务

  1. 创建订单服务 (Flask 应用)

    • order_service/app.py:

      from flask import Flask, jsonify, request
      import requests
      
      app = Flask(__name__)
      
      @app.route('/create_order', methods=['POST'])
      def create_order():
          product_id = request.json.get('product_id')
          # 假设库存服务运行在 http://inventory-service:5001
          response = requests.get(f'http://inventory-service:5001/check_stock/{product_id}')
          if response.json().get('in_stock'):
              return jsonify({"status": "Order Created"}), 201
          else:
              return jsonify({"status": "Out of Stock"}), 200
      
      if __name__ == '__main__':
          app.run(host='0.0.0.0', port=5000)
      
    • order_service/requirements.txt:

      Flask==1.1.2
      requests==2.24.0
      
  2. 创建库存服务

    • inventory_service/app.py:

      from flask import Flask, jsonify
      
      app = Flask(__name__)
      
      @app.route('/check_stock/<int:product_id>')
      def check_stock(product_id):
          # 示例库存检查逻辑
          in_stock = product_id % 2 == 0
          return jsonify({"in_stock": in_stock})
      
      if __name__ == '__main__':
          app.run(host='0.0.0.0', port=5001)
      
    • inventory_service/requirements.txt:

      Flask==1.1.2
      

第二步:创建 Dockerfile 和 Docker Compose 文件

  1. 为每个服务编写 Dockerfile

    • Dockerfile 类似于之前的 Flask 应用 Dockerfile。
  2. 编写 Docker Compose 文件

    • docker-compose.yml:

      version: '3'
      services:
        order-service:
          build: ./order_service
          ports:
            - "5000:5000"
      
        inventory-service:
          build: ./inventory_service
          ports:
            - "5001:5001"
      

第三步:编写集成测试

  1. 创建集成测试

    • integration_test.py:

      import requests
      
      def test_order_creation():
          response = requests.post('http://localhost:5000/create_order', json={"product_id": 2})
          assert response.status_code == 201
          assert response.json().get('status') == 'Order Created'
      

第四步:配置 CI 工具进行集成测试

  1. CI 配置文件:使用 GitHub Actions 或其他 CI 工具。

    • .github/workflows/integration-test.yml:

      name: Integration Test
      
      on: [push]
      
      jobs:
        build:
          runs-on: ubuntu-latest
      
          steps:
          - uses: actions/checkout@v2
          - name: Build and Start Services
            run: docker-compose up --build -d
          - name: Run Integration Tests
            run: python integration_test.py
      

第五步:提交代码并观察自动化测试流程

  1. 提交代码:将微服务代码、Dockerfile、Docker Compose 文件、集成测试和 GitHub Actions 配置文件提交到 Git 仓库。

  2. 观察自动化测试:每次代码提交后,GitHub Actions 会自动运行集成测试。

结论

这个案例展示了如何为基于微服务架构的 Python 应用设置集成测试环境。使用 Docker Compose 编排微服务,并通过 CI 工具自动运行集成测试,我们可以确保不同服务之间的交互按预期工作。这种方法对于复杂应用的质量保证至关重要。

通过这些案例,我们看到 Docker 在构建自动化测试环境中的强大作用。无论是单元测试、集成测试还是其他类型的测试,Docker 都提供了一种快速、一致且可靠的方式来实现自动化测试。这对于确保软件质量和加快开发周期至关重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1470942.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MCU多核异构通信原理

摘要&#xff1a; 本文结合瑞萨RZ/G2L 多核处理器&#xff0c;给大家讲述一下多核异构设计及通信的原理。 随着电子技术的不断发展&#xff0c;以及市场需求的日益增长&#xff0c;嵌入式系统不仅要求执行复杂的控制任务&#xff0c;还需要实时地采集和处理数据。 为了满足这…

计算机网络:思科实验【4-生成树协议STP及虚拟局域网VLAN】

&#x1f308;个人主页&#xff1a;godspeed_lucip &#x1f525; 系列专栏&#xff1a;Cisco Packet Tracer实验 本文对应的实验报告源文件请关注微信公众号程序员刘同学&#xff0c;回复思科获取下载链接。 实验目的实验环境实验内容交换机生成树协议**STP**虚拟局域网**VLAN…

[vue2] 使用provide和inject时,无法获取到实时更新的数据

一、场景 当vue文件中存在多级的父子组件传值&#xff08;即&#xff1a;祖先向下传递数据&#xff09;、多个子组件或孙子级组件都要使用顶级或父级的数据时&#xff0c;使用provide 和 inject 组合无疑是很方便的一种做法了&#xff0c;但如此只是注入的初始值&#xff0c;并…

解码云原生架构:应对变革的挑战

云原生是什么 每次听到这个名词&#xff0c;总是感觉既熟悉&#xff0c;又陌生&#xff0c;真的是很难受&#xff0c;盘他&#xff01; 云原生&#xff08;Cloud-Native&#xff09;是一种软件开发和部署的方法论&#xff0c;旨在利用云计算和云服务的优势来构建、部署和管理…

xss-跨站脚本攻击漏洞

前备知识&#xff1a; Cookie和Session是Web开发中用于维持用户状态、跟踪用户会话的核心技术&#xff0c;它们的主要目的是在无状态的HTTP协议基础上实现有状态的用户交互。 **Cookie**&#xff1a; - Cookie是一种由服务器发送到客户端&#xff08;通常是用户的浏览器&#x…

皓学IT:WEB05-Servlet

一、Servlet 1.1.概述 Servlet是SUN公司提供的一套规范&#xff0c;名称就叫Servlet规范&#xff0c;它也是JavaEE规范之一。我们可以像学习Java基础一样&#xff0c;通过API来学习Servlet。这里需要注意的是&#xff0c;在我们之前JDK的API中是没有Servlet规范的相关内容&am…

C语言编程安全规范

目的 本规范旨在加强编程人员在编程过程中的安全意识,建立编程人员的攻击者思维,养成安全编码的习惯,编写出安全可靠的代码。 2 宏 2.1 用宏定义表达式时,要使用完备的括号 2.2 使用宏时,不允许参数发生变化 3 变量 3.1 所有变量在定义时必须赋初值 变量声明赋予初值,可…

python实现线下缓存最优算法

对于现代计算机为了加快数据存储速度&#xff0c;一般会采用多级缓存的方法&#xff0c;以最简单的二级缓存来说&#xff0c;数据会存放在两个地方&#xff0c;一个地方就是存在内存当中&#xff0c;另一个存放的地方就是存放在硬盘当中&#xff0c;但是这两个地方数据读取的速…

微信小程序-场景功能-开发文档学习笔记

界面常见的交互反馈 查看更多学习笔记&#xff1a;GitHub&#xff1a;LoveEmiliaForever 微信小程序开发指南 微信小程序开发文档 用户和小程序上进行交互的时候&#xff0c;某些操作可能比较耗时&#xff0c;我们应该予以及时的反馈以舒缓用户等待的不良情绪&#xff08;良好…

Centos服务器部署前后端项目

目录 准备工作1. 准备传输软件2. 连接服务器 部署Mysql1.下载Mysql(Linux版本)2. 解压3. 修改配置4. 启动服务另一种方法Docker 部署后端1. 在项目根目录中创建Dockerfile文件写入2. 启动 部署前端1. 在项目根目录中创建Dockerfile文件写入2. 启动 准备工作 1. 准备传输软件 …

机器学习:SVM算法(Python)

一、核函数 kernel_func.py import numpy as npdef linear():"""线性核函数:return:"""def _linear(x_i, x_j):return np.dot(x_i, x_j)return _lineardef poly(degree3, coef01.0):"""多项式核函数:param degree: 阶次:param …

曲线生成 | 图解B样条曲线生成原理(附ROS C++/Python/Matlab仿真)

目录 0 专栏介绍1 控制点计算之插值2 控制点计算之近似3 仿真实现3.1 ROS C实现3.2 Python实现3.3 Matlab实现 0 专栏介绍 &#x1f525;附C/Python/Matlab全套代码&#x1f525;课程设计、毕业设计、创新竞赛必备&#xff01;详细介绍全局规划(图搜索、采样法、智能算法等)&a…

正则表达式详细使用教程

正则是用于匹配字符串中字符组合的模式&#xff0c;在js中&#xff0c;正则也是对象。 定义正则的两种方式&#xff1a; 1.const 变量名new RegExp(/表达式/) <script>const req new RegExp(/a/)console.log(req.test("asd"))//true</script> 2.con…

Ansible 更换aliyun 镜像 并下载tree

目录 查看系统版本找到对应 的版本对当前镜像进行备份下载aliyuan更换成功安装扩展源更换源之后 的三个命令 这里安装一个aliyun 的镜像 本案例 仅供实验参考 生产环境中请谨慎使用 查看系统版本 先查看linux 的系统 版本 ansible slave -m shell -a uname -a找到对应 的版本…

SpringBoot 学习笔记

文章目录 一、IoC二、AOP三、bean3.1 bean 生命周期3.2 三种依赖注入方式3.3 bean 线程安全 四、SpringMVC五、常用注解5.1 Scope5.2 PostConstruct 和 PreDestroy5.3 Component 和 Bean5.4 Autowired 和 Resource 六、基于 ApplicationContextAware 实现工厂模式七、事务失效八…

Cubase学习:Cubase 12常用快捷键

按键盘上的上下箭头就可以让选中的音符向上或向下移动 数字0键: 停止 Ctrl+数字 0 键: 新建视图层 Alt+数字0 键: 重新设置视图层 小数点键: 播放指针回零点 数字1 键: 左定位指针 数字 2 键: 右定位指针 数字3 键--数字9键: 分别控制 3--9 的7个定位标志 Alt+数字1 键--数字9键…

BoomWorks使用wxWidgets+CodeBlocks+GCC开发的软件合集

♦️ 定时执行专家&#xff08;TimingExecutor&#xff09; V7.0 《定时执行专家》是一款制作精良、功能强大、毫秒精度、专业级的定时任务执行软件。软件具有 25 种【任务类型】、12 种【触发器】触发方式&#xff0c;并且全面支持界面化【Cron表达式】设置。软件采用多线程并…

今日早报 每日精选15条新闻简报 每天一分钟 知晓天下事 2月26日,星期一

每天一分钟&#xff0c;知晓天下事&#xff01; 2024年2月26日 星期一 农历正月十七 1、 气象台&#xff1a;3月初之前南方大部将维持阴雨雪天气。 2、 据海关统计&#xff0c;京津冀协同发展十年成效显著&#xff0c;外贸总量跨两个万亿台阶。 3、 2024年研考初试成绩今天起…

C++入门全集(2):类与对象【上】

目录 一、前言 二、struct在C中的变化 三、类的定义 四、类的访问限定符 五、封装 六、类的实例化 七、类对象模型 7.1 如何计算类对象的大小 7.2 类对象的存储方式 八、this指针 8.1 this指针的用途 8.2 this指针的特性 一、前言 C语言是一种面向过程的语言&…

Folx Pro Mac中文p破解版如何使用?为您带来Folx Pro 详细使用教程!

​ Folx pro 5 中文版是mac上一款功能强大的老牌加速下载软件&#xff0c;新版本的Folx pro整体界面非常的简洁和漂亮&#xff0c;具有非常好用的分类管理功能&#xff0c;支持高速下载、定时下载、速度控制、iTunes集成等功能。Folx pro兼容主流的浏览器&#xff0c;不但可以下…