深度学习基础(一)神经网络基本原理

news2025/1/18 4:49:04

之前的章节我们初步介绍了机器学习相关基础知识,目录如下:

机器学习基础(一)理解机器学习的本质-CSDN博客

机器学习基础(二)监督与非监督学习-CSDN博客


机器学习基础(四)非监督学习的进阶探索-CSDN博客机器学习基础(三)监督学习的进阶探索-CSDN博客

机器学习基础(四)非监督学习的进阶探索-CSDN博客

机器学习基础(五)监督与非监督学习的结合-CSDN博客

机器学习基础(六)TensorFlow与PyTorch-CSDN博客

        从这一节开始,我们开始介绍了深度学习相关基础知识。请注意,本节代码示例旨在说明概念,并不是实际应用中的最佳选择。在实际应用中,通常会使用更高级的库和框架,如TensorFlow或PyTorch,来构建和训练神经网络。

目录

与机器学习比较

深度学习简介

两者的关系

从机器学习到深度学习

深度学习的兴起

机器学习与深度学习的选择

神经网络

神经元模型        

生物神经元概述

人工神经元

神经元模型代码示例

网络结构

层次结构

常见网络结构

前向传播

计算过程

前向传播代码示例

反向传播

梯度下降

反向传播代码示例

实际应用案例


与机器学习比较

深度学习简介

        深度学习是机器学习中的一个子集,它通过使用称为神经网络的结构,特别是深层神经网络,来模拟人类大脑处理信息的方式。深度学习的“深度”指的是网络中层的数量,这些层可以自动并且有效地学习数据的多层次特征表示。深度学习在许多复杂的任务中表现出了卓越的性能,如图像和语音识别、自然语言处理和无人驾驶汽车技术。

两者的关系

        机器学习和深度学习的关系可以通过俄罗斯套娃来形象地描述:深度学习是机器学习的一个子集,而机器学习本身又是人工智能的子集。所有深度学习都是机器学习,但并非所有机器学习都是深度学习。

从机器学习到深度学习

        传统的机器学习模型依赖于手工提取的特征和数据表示,这要求领域专家深入了解问题。相比之下,深度学习模型通过足够深的神经网络自动学习特征表示,减少了对领域知识的依赖。这种自动特征学习使深度学习在处理复杂和高维数据时,如图像、声音和文本,表现出了显著的优势。

深度学习的兴起

        深度学习之所以能够取得突破性的进展,归功于以下几个关键因素:大量的数据集、强大的计算能力和算法的创新。大数据的可用性为深度学习模型的训练提供了丰富的“经验”,而GPU和其他专用硬件的发展则显著加速了这些模型的训练过程。此外,算法上的创新,如卷积神经网络(CNN)和长短期记忆网络(LSTM),为特定类型的数据和任务提供了高效的模型架构。

机器学习与深度学习的选择

        尽管深度学习在许多任务上取得了巨大成功,但这并不意味着它适用于所有问题。在某些情况下,传统的机器学习算法(如决策树、随机森林和支持向量机)可能更加有效和适合。选择使用机器学习还是深度学习取决于多个因素,包括数据的复杂性、任务的性质、可用的计算资源和所需的准确性。

神经网络

        在人工智能领域,神经网络技术模仿人脑的处理方式,已经成为最令人兴奋的进步之一。这种技术的应用范围从简单的日常任务自动化到复杂的决策过程和模式识别,涵盖了医学、金融、自动驾驶车辆等多个领域。神经网络的核心原理启发于我们对人脑工作机制的理解,通过模拟神经元之间的连接来处理和存储信息。

     

神经元模型        

生物神经元概述

        生物神经元是人脑中的基本单位,由细胞体、树突和轴突组成。树突接收来自其他神经元的信号,细胞体处理这些信号,轴突将处理后的信号传递给其他神经元。这种高效的信息传递机制激发了人工神经元的设计。

人工神经元

        人工神经元模仿生物神经元的功能,接收一组输入,通过加权和并应用激活函数处理这些输入,最后产生输出。这个过程可以用以下数学模型表示:

神经元模型代码示例

        这个简单的Python函数演示了一个基本的神经元模型,它接收一组输入和相应的权重,然后应用一个激活函数(这里使用Sigmoid函数)来计算输出。

import numpy as np

def sigmoid(x):
    """Sigmoid激活函数"""
    return 1 / (1 + np.exp(-x))

def neuron_output(weights, inputs):
    """单个神经元的输出计算"""
    return sigmoid(np.dot(weights, inputs))

网络结构

        神经网络通过层次化的神经元组织起来,形成从简单到复杂的结构。

层次结构
  • 输入层:接收原始数据。
  • 隐藏层:一个或多个,进行数据加工和特征提取。
  • 输出层:产生最终结果。
常见网络结构
  • 前馈神经网络(FNN):数据单向流动,从输入层到输出层。
  • 卷积神经网络(CNN):特别适合处理图像数据。
  • 递归神经网络(RNN):处理序列数据,如时间序列或文本。

前向传播

        前向传播是数据在神经网络中从输入到输出的流动过程。每一层的输出都依赖于其输入、层内神经元的权重和偏置项,以及激活函数。这个过程可以通过层层计算实现,直到达到输出层。

计算过程
  1. 输入层:接收输入数据。
  2. 隐藏层:计算加权和,应用激活函数。
  3. 输出层:生成最终预测结果。

前向传播代码示例

        这个示例展示了如何在一个简单的神经网络中实现前向传播。这个网络包括输入层、一个隐藏层和输出层。

def forward_propagation(network, inputs):
    """简单的前向传播实现"""
    activations = inputs
    for layer in network:
        # 添加偏置项
        activations = np.dot(layer['weights'], activations) + layer['bias']
        # 应用激活函数
        activations = sigmoid(activations)
    return activations

# 示例网络结构
network = [
    {"weights": np.array([0.2, 0.4, 0.6]), "bias": np.array([0.1])},  # 隐藏层
    {"weights": np.array([0.5, 0.6]), "bias": np.array([0.2])}        # 输出层
]

# 输入向量
inputs = np.array([0.5, 0.3, 0.2])

# 前向传播计算
output = forward_propagation(network, inputs)
print("Network output:", output)

反向传播

        反向传播是训练神经网络的核心机制,用于优化权重,以减少预测值和实际值之间的差异。这个过程涉及以下步骤:

  1. 计算误差:评估输出层的误差。
  2. 传播误差:将误差从输出层反向传递到输入层,途中更新每个神经元的权重。
梯度下降

        权重的更新依赖于梯度下降算法,该算法通过计算损失函数相对于每个权重的梯度来调整权重,以最小化误差。

反向传播代码示例

        反向传播是一个相对复杂的过程,涉及到计算损失函数相对于每个权重的梯度,并根据这些梯度更新权重。以下是一个简化的反向传播过程示例。

def backward_propagation(network, inputs, expected_output):
    """简单的反向传播实现"""
    outputs = forward_propagation(network, inputs)
    error = expected_output - outputs
    
    for i, layer in reversed(list(enumerate(network))):
        # 计算当前层的误差
        layer_error = error * outputs * (1.0 - outputs)
        error = np.dot(layer['weights'].T, layer_error)
        # 更新权重和偏置项
        layer['weights'] += layer_error * inputs.T
        layer['bias'] += layer_error

# 假设的期望输出
expected_output = np.array([0.8])

# 反向传播权重更新
backward_propagation(network, inputs, expected_output)

实际应用案例

        神经网络在众多领域内的应用案例展示了其强大的能力。在医疗领域,神经网络能够帮助诊断疾病和预测病情发展;在金融领域,它们用于风险管理和算法交易;在自动驾驶技术中,神经网络使车辆能够识别物体和做出决策。

        神经网络技术的未来前景广阔,随着研究的深入和计算能力的增强,它们将在解决更复杂问题和创造新的应用方面发挥更大的作用。

        神经网络作为人工智能领域的一个重要分支,其灵感来源于人类大脑的工作原理,已经证明了其在多个领域的巨大潜力。通过深入理解神经网络的基本原理和应用,我们可以更好地利用这项技术,推动社会和科技的进步。

下一节开始我们将进行卷积神经网络(CNN)的应用介绍讲解

深度学习基础(二)卷积神经网络(CNN)-CSDN博客文章浏览阅读2次。卷积神经网络(CNN)的应用领域广泛,尤其在图像处理方面,CNN已经成为了一种革命性的工具。本章将深入探讨CNN的架构、典型应用案例以及性能分析,旨在为读者提供一个全面的视角,理解CNN在图像处理中的核心作用及其背后的原理。https://blog.csdn.net/qq_52213943/article/details/136259197?spm=1001.2014.3001.5501-----------------

以上,欢迎点赞收藏、评论区交流

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1470270.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python jupyter notebook打开页面方便使用

如果没安装jupyter, 请安装: pip install jupyter notebook 运行jupyter notebook jupyter-notebook

【SpringBoot】Spring常用注解总结

目录 ⭐spring springmvc和springboot的区别 Autowired 和Resource的区别和联系 1. SpringBootApplication 2. Spring Bean 相关 2.1. Autowired 2.2. Component,Repository,Service, Controller 2.3. RestController 2.4. Scope 2.5. Configuration 3. 处理常见的 HT…

利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972 个人介绍: 研一|统计学|干货分享          擅长Python、Matlab、R等主流编程软件          累计十余项国家级比赛奖项,参与研究经费10w、40w级横向 文…

红队攻防之powershell上线基础免杀(一)

不努力,你背井离乡干嘛?当卧底啊 环境为win10,在哥斯拉生成的webshell下,执行powershell命令。 测试杀毒软件为:火绒,腾讯电脑管家 哥斯拉生成php文件的webshell 如图 哥斯拉进行连接 把要执行命令的文件…

[树形DP] 树的最大独立集

题目 这个挺简单的&#xff0c;注意状态转移时&#xff0c;如果选这个点&#xff0c;那么它的子结点状态应该为不选&#xff0c;如果这个点的状态是不选&#xff0c;那么可以在它的子结点里选择&#xff1a;选/不选两个状态&#xff0c;所以最后结果是max挑选。 #include<b…

业务流程管理系统(BPMS):一文掌握,组织业务流程优化必备。

大家好&#xff0c;我是大美B端工场&#xff0c;本期继续分享商业智能信息系统的设计&#xff0c;欢迎大家关注&#xff0c;如有B端写系统界面的设计和前端需求&#xff0c;可以联络我们。 一、什么是BPMS系统 BPMS是Business Process Management System&#xff08;业务流程管…

Java面试:Spring Cloud Alibaba

文章目录 引言I Spring Cloud Alibaba1.1 配置文件加载的优先级(由高到低)1.2 注册中心1.3 rpcII 高并发场景:缓存穿透/缓存失效/雪崩如何解决2.1 缓存穿透2.2 缓存击穿(失效)2.3 缓存雪崩引言 微服务涉及的中间件分布式事务事务的传播方式事务的隔离级别缓存穿透/缓存失效…

基于springboot+vue的校园社团信息管理系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

代码随想录算法训练营第三天

● 自己看到题目的第一想法 203.移除链表元素 方法一&#xff1a; 思路&#xff1a; 设置虚拟头节点 dummyhead 设置临时指针 cur 遍历 整个链表 循环&#xff1a; 如果 cur !nullptr &&cur->next !nullptr 则 遍历链表 否则结束遍历 如果 cur->next val 则…

Linux之安装jdk,tomcat,mysql,部署项目

目录 一、操作流程 1.1安装jdk 1.2安装tomcat&#xff08;加创建自启动脚本&#xff09; 1.3 安装mysql 1.4部署项目 一、操作流程 首先把需要用的包放进opt文件下 1.1安装jdk 把jdk解压到/usr/local/java里 在刚刚放解压包的文件夹打开vim /etc/profile编辑器&#xff0c…

QoS 服务质量

服务质量 QoS (Quality of Service) 服务质量可用若干基本性能指标来描述&#xff0c;包括&#xff1a;可用性、差错率、响应时间、吞吐量、分组丢失率、连接建立时间、故障检测和改正时间等。 服务提供者可向其用户保证某一种等级的服务质量。 服务性能的总效果&#xff0c;…

JavaWeb——007MYSQL(DQL多表设计)

# 数据库开发-MySQL 一级目录二级目录三级目录 1. 数据库操作-DQL1.1 介绍1.2 语法1.3 基本查询1.4 条件查询1.5 聚合函数1.6 分组查询1.7 排序查询1.8 分页查询1.9 案例1.9.1 案例一1.9.2 案例二 2. 多表设计2.1 一对多2.1.1 表设计2.1.2 外键约束 2.2 一对一2.3 多对多2.4 案…

操作符详解3

✨✨ 欢迎大家来到莉莉的博文✨✨ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 前面我们已经讲过算术操作符、赋值操作符、逻辑操作符、条件操作符和部分的单目操作 符&#xff0c;今天继续介绍一部分。 目录 1.操作符的分类 2…

云尚办公-0.2.0

4. service层 MyBatisPlus封装了service层&#xff0c;只需要继承IService接口即可。并且MyBatisPlus实现了提供了接口的实现类。 package pers.beiluo.yunshangoffice.service;import com.baomidou.mybatisplus.extension.service.IService; import pers.beiluo.yunshangoff…

【程序员必备技能】Git入门

目录 &#x1f308;前言&#x1f308; &#x1f4c1; Git的概念 &#x1f4c2; 版本控制 &#x1f4c2; 集中式 和 分布式 ​ &#x1f4c1; 创建和配置本地仓库 &#x1f4c1; 理解工作区&#xff0c;暂存区&#xff0c;版本库 &#x1f4c1; Git的基本操作 &#x1f4c2;…

如何做到三天内完成智能直流伺服电机系统开发?

适应EtherCAT/CANopen协议三相伺服电机直流伺服电机直线伺服音圈电机 如何开发高性能直流伺服电机驱动控制器&#xff1f; 需要熟悉高性能单片机&#xff08;至少是ARM或DSP水平的&#xff09;&#xff0c;需要掌握空间磁场矢量控制FOC&#xff0c;需要掌握运动轨迹算法……此…

Order By Limit不稳定性

文章目录 前置解决不确定性场景1 Order By索引1.1 背景1.2 不确定性产生原因1.2.1 正常情况下1.2.2 但是 1.3 补充1.4 场景1总结 场景2 Order by id2.1 背景2.2 不会产生不确定性原因1原因2 2.3 推荐使用方式 场景3 filesort3.1 背景3.2 不确定性产生原因3.3 内存排序和磁盘临时…

【监控】grafana图表使用快速上手

目录 1.前言 2.连接 3.图表 4.job和path 5.总结 1.前言 上一篇文章中&#xff0c;我们使用spring actuatorPrometheusgrafana实现了对一个spring boot应用的可视化监控。 【监控】Spring BootPrometheusGrafana实现可视化监控-CSDN博客 其中对grafana只是打开了一下&am…

【前端素材】推荐优质后台管理系统Welly平台模板(附源码)

一、需求分析 后台管理系统&#xff08;或称作管理后台、管理系统、后台管理平台&#xff09;是一种专门用于管理网站、应用程序或系统后台运营的软件系统。它通常由一系列功能模块组成&#xff0c;为管理员提供了管理、监控和控制网站或应用程序的各个方面的工具和界面。以下…

Vue3 学习笔记(Day4)

「写在前面」 本文为尚硅谷禹神 Vue3 教程的学习笔记。本着自己学习、分享他人的态度&#xff0c;分享学习笔记&#xff0c;希望能对大家有所帮助。推荐先按顺序阅读往期内容&#xff1a; 1. Vue3 学习笔记&#xff08;Day1&#xff09; 2. Vue3 学习笔记&#xff08;Day2&…