Java线程池实现原理详解

news2025/2/28 15:35:13

线程池是什么

线程池(Thread Pool)是一种基于池化思想管理线程的工具,经常出现在多线程服务器中,如MySQL。

线程过多会带来额外的开销,其中包括创建销毁线程的开销、调度线程的开销等等,同时也降低了计算机的整体性能。线程池维护多个线程,等待监督管理者分配可并发执行的任务。这种做法,一方面避免了处理任务时创建销毁线程开销的代价,另一方面避免了线程数量膨胀导致的过分调度问题,保证了对内核的充分利用。

而本文描述线程池是JDK中提供的ThreadPoolExecutor类。

当然,使用线程池可以带来一系列好处:

降低资源消耗:通过池化技术重复利用已创建的线程,降低线程创建和销毁造成的损耗。
提高响应速度:任务到达时,无需等待线程创建即可立即执行。
提高线程的可管理性:线程是稀缺资源,如果无限制创建,不仅会消耗系统资源,还会因为线程的不合理分布导致资源调度失衡,降低系统的稳定性。使用线程池可以进行统一的分配、调优和监控。
提供更多更强大的功能:线程池具备可拓展性,允许开发人员向其中增加更多的功能。比如延时定时线程池ScheduledThreadPoolExecutor,就允许任务延期执行或定期执行。

线程池解决的问题是什么

线程池解决的核心问题就是资源管理问题。在并发环境下,系统不能够确定在任意时刻中,有多少任务需要执行,有多少资源需要投入。这种不确定性将带来以下若干问题:

频繁申请/销毁资源和调度资源,将带来额外的消耗,可能会非常巨大。
对资源无限申请缺少抑制手段,易引发系统资源耗尽的风险。
系统无法合理管理内部的资源分布,会降低系统的稳定性。
为解决资源分配这个问题,线程池采用了“池化”(Pooling)思想。池化,顾名思义,是为了最大化收益并最小化风险,而将资源统一在一起管理的一种思想。

Pooling is the grouping together of resources (assets, equipment, personnel, effort, etc.) for the purposes of maximizing advantage or minimizing risk to the users. The term is used in finance, computing and equipment management.——wikipedia

“池化”思想不仅仅能应用在计算机领域,在金融、设备、人员管理、工作管理等领域也有相关的应用。

在计算机领域中的表现为:统一管理IT资源,包括服务器、存储、和网络资源等等。通过共享资源,使用户在低投入中获益。除去线程池,还有其他比较典型的几种使用策略包括:

内存池(Memory Pooling):预先申请内存,提升申请内存速度,减少内存碎片。
连接池(Connection Pooling):预先申请数据库连接,提升申请连接的速度,降低系统的开销。
实例池(Object Pooling):循环使用对象,减少资源在初始化和释放时的昂贵损耗。

线程池核心设计与实现

JAVA中创建线程池主要有两类方法,一类是通过Executors工厂类提供的方法,该类提供了4种不同的线程池可供使用。另一类是通过ThreadPoolExecutor类进行自定义创建。

Executors 工厂类提供的4种不同的线程池

Executors.newFixedThreadPool();
Executors.newSingleThreadExecutor();
Executors.newCachedThreadPool();
Executors.newScheduledThreadPool();

以上四个方法的底层都是通过ThreadPoolExecutor 实现的。

阿里巴巴集团技术团队的《Java 开发手册》推荐使用ThreadPoolExecutor.
在这里插入图片描述

ThreadPoolExecutor

总体设计

Java中的线程池核心实现类是ThreadPoolExecutor,本篇基于JDK 1.8的源码来分析Java线程池的核心设计与实现。首先来看一下ThreadPoolExecutor的UML类图,了解下ThreadPoolExecutor的继承关系。

ThreadPoolExecutor UML类图

ThreadPoolExecutor实现的顶层接口是Executor,定义了一个用于执行Runnable的execute方
法,顶层接口Executor提供了一种思想:

将任务提交和任务执行进行解耦。用户无需关注如何创建线程,如何调度线程来执行任务,用户只需提供Runnable对象,将任务的运行逻辑提交到执行器(Executor)中,由Executor框架完成线程的调配和任务的执行部分。

public interface Executor {
    void execute(Runnable command);
}

ExecutorService接口增加了一些能力:
(1)扩充执行任务的能力,补充可以为一个或一批异步任务生成Future的方法;
(2)提供了管控线程池的方法,比如停止线程池的运行。

public interface ExecutorService extends Executor {
	void shutdown();
	List<Runnable> shutdownNow();
    boolean isShutdown();
    
    boolean isTerminated();
    boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;
    
    <T> Future<T> submit(Callable<T> task);
    Future<?> submit(Runnable task);
    
    <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) throws InterruptedException;
    <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit)  throws InterruptedException;
    <T> T invokeAny(Collection<? extends Callable<T>> tasks) throws InterruptedException, ExecutionException;
    <T> T invokeAny(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

AbstractExecutorService则是上层的抽象类,将执行任务的流程串联了起来,保证下层的实现只需关注一个执行任务的方法即可。

public abstract class AbstractExecutorService implements ExecutorService {
    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
        return new FutureTask<T>(runnable, value);
    }

    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
        return new FutureTask<T>(callable); 
    }

    public Future<?> submit(Runnable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<Void> ftask = newTaskFor(task, null);
        execute(ftask);
        return ftask;
    }
    .......
}

最下层的实现类ThreadPoolExecutor实现最复杂的运行部分,ThreadPoolExecutor将会一方面维护自身的生命周期,另一方面同时管理线程和任务,使两者良好的结合从而执行并行任务。

public class ThreadPoolExecutor extends AbstractExecutorService {
   private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // runState is stored in the high-order bits
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

    // Packing and unpacking ctl
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    private static int ctlOf(int rs, int wc) { return rs | wc; }
  
	public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             threadFactory, defaultHandler);
    }

    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.acc = System.getSecurityManager() == null ?
                null :
                AccessController.getContext();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }
......
}

ThreadPoolExecutor是如何运行,如何同时维护线程和执行任务的呢?其运行机制如下图所示:
在这里插入图片描述

线程池在内部实际上构建了一个生产者消费者模型,将线程和任务两者解耦,并不直接关联,从而良好的缓冲任务,复用线程。

线程池的运行主要分成两部分:任务管理、线程管理。
任务管理部分充当生产者的角色,当任务提交后,线程池会判断该任务后续的流转:
(1)直接申请线程执行该任务;
(2)缓冲到队列中等待线程执行;
(3)拒绝该任务。线程管理部分是消费者,它们被统一维护在线程池内,根据任务请求进行线程的分配,当线程执行完任务后则会继续获取新的任务去执行,最终当线程获取不到任务的时候,线程就会被回收。

接下来,按照以下三个部分去详细讲解线程池运行机制:

线程池如何维护自身状态。
线程池如何管理任务。
线程池如何管理线程。

生命周期管理

线程池运行的状态,并不是用户显式设置的,而是伴随着线程池的运行,由内部来维护。
线程池内部使用一个变量维护两个值:运行状态(runState)和线程数量 (workerCount)。在具体实现中,线程池将运行状态(runState)、线程数量 (workerCount)两个关键参数的维护放在了一起,如下代码所示:

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

ctl这个AtomicInteger类型,是对线程池的运行状态和线程池中有效线程的数量进行控制的一个字段, 它同时包含两部分的信息:线程池的运行状态 (runState) 和线程池内有效线程的数量 (workerCount),高3位保存runState,低29位保存workerCount,两个变量之间互不干扰。

用一个变量去存储两个值,可避免在做相关决策时,出现不一致的情况,不必为了维护两者的一致,而占用锁资源。通过阅读线程池源代码也可以发现,经常出现要同时判断线程池运行状态和线程数量的情况。线程池也提供了若干方法去供用户获得线程池当前的运行状态、线程个数。这里都使用的是位运算的方式,相比于基本运算,速度也会快很多。

关于内部封装的获取生命周期状态、获取线程池线程数量的计算方法如以下代码所示:

private static int runStateOf(int c)     { return c & ~CAPACITY; } //计算当前运行状态
private static int workerCountOf(int c)  { return c & CAPACITY; }  //计算当前线程数量
private static int ctlOf(int rs, int wc) { return rs | wc; }   //通过状态和线程数生成ctl

ThreadPoolExecutor的运行状态有5种,分别为:

在这里插入图片描述
其生命周期转换如下入所示:

在这里插入图片描述

任务执行机制

任务调度

任务调度是线程池的主要入口,当用户提交了一个任务,接下来这个任务将如何执行都是由这个阶段决定的。了解这部分就相当于了解了线程池的核心运行机制。

首先,所有任务的调度都是由execute方法完成的,这部分完成的工作是:检查现在线程池的运行状态、运行线程数、运行策略,决定接下来执行的流程,是直接申请线程执行,或是缓冲到队列中执行,亦或是直接拒绝该任务。其执行过程如下:

首先检测线程池运行状态,如果不是RUNNING,则直接拒绝,线程池要保证在RUNNING的状态下执行任务。
如果workerCount < corePoolSize,则创建并启动一个线程来执行新提交的任务。
如果workerCount >= corePoolSize,且线程池内的阻塞队列未满,则将任务添加到该阻塞队列中。
如果workerCount >= corePoolSize && workerCount < maximumPoolSize,且线程池内的阻塞队列已满,则创建并启动一个线程来执行新提交的任务。
如果workerCount >= maximumPoolSize,并且线程池内的阻塞队列已满, 则根据拒绝策略来处理该任务, 默认的处理方式是直接抛异常。

其执行流程如下图所示:

在这里插入图片描述

任务缓冲

任务缓冲模块是线程池能够管理任务的核心部分。线程池的本质是对任务和线程的管理,而做到这一点最关键的思想就是将任务和线程两者解耦,不让两者直接关联,才可以做后续的分配工作。线程池中是以生产者消费者模式,通过一个阻塞队列来实现的。阻塞队列缓存任务,工作线程从阻塞队列中获取任务。

阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作是:在队列为空时,获取元素的线程会等待队列变为非空。当队列满时,存储元素的线程会等待队列可用。

阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程。阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素。

下图中展示了线程1往阻塞队列中添加元素,而线程2从阻塞队列中移除元素:

在这里插入图片描述

使用不同的队列可以实现不一样的任务存取策略。在这里,我们可以再介绍下阻塞队列的成员:

在这里插入图片描述

任务申请

由上文的任务分配部分可知,任务的执行有两种可能:
一种是任务直接由新创建的线程执行。
另一种是线程从任务队列中获取任务然后执行,执行完任务的空闲线程会再次去从队列中申请任务再去执行。
第一种情况仅出现在线程初始创建的时候,第二种是线程获取任务绝大多数的情况。

线程需要从任务缓存模块中不断地取任务执行,帮助线程从阻塞队列中获取任务,实现线程管理模块和任务管理模块之间的通信。这部分策略由getTask方法实现,其执行流程如下图所示:

获取任务流程图

getTask这部分进行了多次判断,为的是控制线程的数量,使其符合线程池的状态。如果线程池现在不应该持有那么多线程,则会返回null值。工作线程Worker会不断接收新任务去执行,而当工作线程Worker接收不到任务的时候,就会开始被回收。

任务拒绝

任务拒绝模块是线程池的保护部分,线程池有一个最大的容量,当线程池的任务缓存队列已满,并且线程池中的线程数目达到maximumPoolSize时,就需要拒绝掉该任务,采取任务拒绝策略,保护线程池。

拒绝策略是一个接口,其设计如下:

public interface RejectedExecutionHandler {
    void rejectedExecution(Runnable r, ThreadPoolExecutor executor);
}

用户可以通过实现这个接口去定制拒绝策略,也可以选择JDK提供的四种已有拒绝策略,其特点如下:
在这里插入图片描述

Worker线程管理

Worker线程

线程池为了掌握线程的状态并维护线程的生命周期,设计了线程池内的工作线程Worker。我们来看一下它的部分代码:

private final class Worker extends AbstractQueuedSynchronizer implements Runnable{
    final Thread thread;//Worker持有的线程
    Runnable firstTask;//初始化的任务,可以为null
}

Worker这个工作线程,实现了Runnable接口,并持有一个线程thread,一个初始化的任务firstTask。thread是在调用构造方法时通过ThreadFactory来创建的线程,可以用来执行任务;firstTask用它来保存传入的第一个任务,这个任务可以有也可以为null。如果这个值是非空的,那么线程就会在启动初期立即执行这个任务,也就对应核心线程创建时的情况;如果这个值是null,那么就需要创建一个线程去执行任务列表(workQueue)中的任务,也就是非核心线程的创建。

Worker执行任务的模型如下图所示:

Worker执行任务

线程池需要管理线程的生命周期,需要在线程长时间不运行的时候进行回收。线程池使用一张Hash表去持有线程的引用,这样可以通过添加引用、移除引用这样的操作来控制线程的生命周期。这个时候重要的就是如何判断线程是否在运行。

​Worker是通过继承AQS,使用AQS来实现独占锁这个功能。没有使用可重入锁ReentrantLock,而是使用AQS,为的就是实现不可重入的特性去反应线程现在的执行状态。

1.lock方法一旦获取了独占锁,表示当前线程正在执行任务中。 2.如果正在执行任务,则不应该中断线程。 3.如果该线程现在不是独占锁的状态,也就是空闲的状态,说明它没有在处理任务,这时可以对该线程进行中断。 4.线程池在执行shutdown方法或tryTerminate方法时会调用interruptIdleWorkers方法来中断空闲的线程,interruptIdleWorkers方法会使用tryLock方法来判断线程池中的线程是否是空闲状态;如果线程是空闲状态则可以安全回收。

在线程回收过程中就使用到了这种特性,回收过程如下图所示:
在这里插入图片描述

Worker线程增加

增加线程是通过线程池中的addWorker方法,该方法的功能就是增加一个线程,该方法不考虑线程池是在哪个阶段增加的该线程,这个分配线程的策略是在上个步骤完成的,该步骤仅仅完成增加线程,并使它运行,最后返回是否成功这个结果。

addWorker方法有两个参数:firstTask、core。
firstTask参数用于指定新增的线程执行的第一个任务,该参数可以为空;
core参数为true表示在新增线程时会判断当前活动线程数是否少于corePoolSize,false表示新增线程前需要判断当前活动线程数是否少于maximumPoolSize,其执行流程如下图所示:在这里插入图片描述

Worker线程回收

线程池中线程的销毁依赖JVM自动的回收,线程池做的工作是根据当前线程池的状态维护一定数量的线程引用,防止这部分线程被JVM回收,当线程池决定哪些线程需要回收时,只需要将其引用消除即可。

Worker被创建出来后,就会不断地进行轮询,然后获取任务去执行,核心线程可以无限等待获取任务,非核心线程要限时获取任务。

当Worker无法获取到任务,也就是获取的任务为空时,循环会结束,Worker会主动消除自身在线程池内的引用。

try {
  while (task != null || (task = getTask()) != null) {
    //执行任务
  }
} finally {
  processWorkerExit(w, completedAbruptly);//获取不到任务时,主动回收自己
}

线程回收的工作是在processWorkerExit方法完成的。
在这里插入图片描述
事实上,在这个方法中,将线程引用移出线程池就已经结束了线程销毁的部分。但由于引起线程销毁的可能性有很多,线程池还要判断是什么引发了这次销毁,是否要改变线程池的现阶段状态,是否要根据新状态,重新分配线程。

Worker线程执行任务

在Worker类中的run方法调用了runWorker方法来执行任务,runWorker方法的执行过程如下:

1.while循环不断地通过getTask()方法获取任务。
2.getTask()方法从阻塞队列中取任务。
3.如果线程池正在停止,那么要保证当前线程是中断状态,否则要保证当前线程不是中断状态。
4.执行任务。
5.如果getTask结果为null则跳出循环,执行processWorkerExit()方法,销毁线程。

执行流程如下图所示:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1469717.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

03|Order by与Group by优化

索引顺序依次是 &#xff1a; name,age,position 案例1 EXPLAIN SELECT * FROM employees WHERE name LiLei AND position dev ORDER BY age;分析: 联合索引中只是用到了name字段做等值查询[通过key_len 74可以看出因为name字段的len74]&#xff0c;在这个基础上使用了age进…

sql-labs32关宽字节注入

一、环境 网上有自己找很快 二、如何通关 2.1解释 虚假预编译没有参数绑定的过程&#xff0c;真实预编译有参数绑定的过程 宽字节注入出现的本质就是因为数据库的编码与代码的编码不同&#xff0c;导致用户可以通过输入精心构造的数据通过编码转换吞掉转义字符。 在32关中…

华为HCIP Datacom H12-831 卷24

多选题 1、如图所示&#xff0c;某园区部署OSPF实现网络互通&#xff0c;其中Area1部署为NSSA区域。某工程师为了实现R1访问R4的环回口地址&#xff0c;在R4的OSPF进程中引入直连路由。以下关于该场景的描述,错误的有哪些项? A、在R4引入直连路由后&#xff0c;R1通过转换后的…

Java基于物联网技术的智慧工地云管理平台源码 依托丰富的设备接口标准库,快速接入工地现场各类型设备

目录 风险感知全面化 项目进度清晰化 环境监测实时化 人员管理高效化 工地数字化 数据网络化 管理智慧化 智慧工地平台整体架构 1个可扩展监管平台 2个应用端 3方数据融合 N个智能设备 智慧工地的远程监管&#xff0c;是工地负责人掌握施工现场情况的必要手段&…

第6.4章:StarRocks查询加速——Colocation Join

目录 一、StarRocks数据划分 1.1 分区 1.2 分桶 二、Colocation Join实现原理 2.1 Colocate Join概述 2.2 Colocate Join实现原理 三、应用案例 注&#xff1a;本篇文章阐述的是StarRocks-3.2版本的Colocation Join 官网文章地址&#xff1a; Colocate Join | StarRoc…

JAVA算法和数据结构

一、Arrays类 1.1 Arrays基本使用 我们先认识一下Arrays是干什么用的&#xff0c;Arrays是操作数组的工具类&#xff0c;它可以很方便的对数组中的元素进行遍历、拷贝、排序等操作。 下面我们用代码来演示一下&#xff1a;遍历、拷贝、排序等操作。需要用到的方法如下 public…

SpringMVC 学习(五)之域对象

目录 1 域对象介绍 2 向 request 域对象共享数据 2.1 通过 ServletAPI (HttpServletRequest) 向 request 域对象共享数据 2.2 通过 ModelAndView 向 request 域对象共享数据 2.3 通过 Model 向 request 域对象共享数据 2.4 通过 map 向 request 域对象共享数据 2.5 通过…

音视频数字化(数字与模拟-电影)

针对电视屏幕,电影被称为“大荧幕”,也是娱乐行业的顶尖产业。作为一项综合艺术,从被发明至今,近200年的发展史中,无人可以替代,并始终走在时代的前列。 电影回放的原理就是“视觉残留”,也就是快速移过眼前的画面,会在人的大脑中残留短暂的时间,随着画面不断地移过,…

智慧城市,未来已来:数字中国建设中的创新实践

随着数字技术的飞速发展&#xff0c;中国正迎来一个全新的智慧城市时代。在这个时代&#xff0c;城市的每一个角落都充满了科技的气息&#xff0c;人们的生活也因此变得更加便捷、高效和美好。今天&#xff0c;就让我们一起走进这个充满未来感的智慧城市&#xff0c;探索数字中…

onlyoffice api开发

编写代码 按照https://api.onlyoffice.com/editors/basic编写代码 <html> <head><meta charset"UTF-8"><meta name"viewport"content"widthdevice-width, user-scalableno, initial-scale1.0, maximum-scale1.0, minimum-scal…

长短连接对压测的影响有多大

【引言】 当我们进行压力测试时&#xff0c;长短连接是一个非常重要的参数。但是&#xff0c;你知道吗&#xff1f;长短连接对于压测结果有着非常大的影响&#xff01;如果你不理解这个参数&#xff0c;那么你的压测结果可能会出现严重的偏差。 在这篇文章中&#xff0c;我将…

使用 yarn 的时候,遇到 Error [ERR_REQUIRE_ESM]: require() of ES Module 怎么解决?

晚上回到家&#xff0c;我打开自己的项目&#xff0c;执行&#xff1a; cd HexoPress git pull --rebase yarn install yarn dev拉取在公司 push 的代码&#xff0c;然后更新依赖&#xff0c;最后开始今晚的开发时候&#xff0c;意外发生了&#xff0c;竟然报错了&#xff0c;…

吴恩达deeplearning.ai:Tensorflow训练一个神经网络

以下内容有任何不理解可以翻看我之前的博客哦&#xff1a;吴恩达deeplearning.ai 在之前的博客中。我们陆续学习了各个方面的有关深度学习的内容&#xff0c;今天可以从头开始训练一个神经网络了。 Tensorflow训练神经网络模型 我们使用之前用过的例子&#xff1a; 这个神经…

软件开发的艺术与科学

随着科技的飞速发展&#xff0c;软件开发已成为当今社会不可或缺的一部分。从智能手机应用程序到企业级管理系统&#xff0c;软件开发已经渗透到我们生活的方方面面。本文将探讨软件开发的重要性和现状&#xff0c;以及开发过程中涉及的关键环节和常见问题。 一、软件开发的重…

leetcode:491.递增子序列

1.误区&#xff1a;不能直接对数组排序再求解子集&#xff0c;因为那样就改变了原有数组的顺序 2.树形结构&#xff1a;一个一个取数&#xff0c;然后保证是递增序列&#xff0c;且不能重复。&#xff08;数层上不可以重复取&#xff0c;树枝上可以重复取&#xff09;收集的结…

Android BitmapDrawable.bitmap与BitmapFactory.decodeResource获取不到原始图像素级真实宽高,Kotlin

Android BitmapDrawable.bitmap与BitmapFactory.decodeResource获取不到原始图像素级真实宽高&#xff0c;Kotlin 当一个图片放在ImageView里面后&#xff0c;用以下方式获取图的宽高&#xff1a; val bmp1 (this.drawable as BitmapDrawable).bitmapLog.d("fly", &…

SpringBoot实现缓存预热方案

缓存预热是指在 Spring Boot 项目启动时,预先将数据加载到缓存系统(如 Redis)中的一种机制。 那么问题来了,在 Spring Boot 项目启动之后,在什么时候?在哪里可以将数据加载到缓存系统呢? 实现方案概述 在 Spring Boot 启动之后,可以通过以下手段实现缓存预热: 使用…

蓝桥杯《修剪灌木》

题目描述 爱丽丝要完成一项修剪灌木的工作。有 N 棵灌木整齐的从左到右排成一排。爱丽丝在每天傍晚会修剪一棵灌木&#xff0c;让灌木的高度变为 0 厘米。爱丽丝修剪灌木的顺序是从最左侧的灌木开始&#xff0c;每天向右修剪一棵灌木。当修剪了最右侧的灌木后&#xff0c;她会…

#FPGA(基础知识)

1.IDE:Quartus II 2.设备&#xff1a;Cyclone II EP2C8Q208C8N 3.实验&#xff1a;正点原子-verilog基础知识 4.时序图&#xff1a; 5.步骤 6.代码&#xff1a;

Java 存图方式

图最常见的两种存储方式是邻接表和邻接矩阵。 链式前向星其实就是静态建立的邻接表,时间效率为 O(n),空间效率也为 O(n)。遍历效率也为 O(n)。 一、邻接表 邻接表存储方式适合存储边稀疏的图,判断两点之间是否有边不方便; 邻接矩阵适合存储边稠密的,判断边和权值都很方…