C++力扣题目300--最长递增子序列 674--最长连续递增序列 718--最长重复子数组

news2024/12/22 14:03:29

300.最长递增子序列

力扣题目链接(opens new window)

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

  • 输入:nums = [10,9,2,5,3,7,101,18]
  • 输出:4
  • 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

  • 输入:nums = [0,1,0,3,2,3]
  • 输出:4

示例 3:

  • 输入:nums = [7,7,7,7,7,7,7]
  • 输出:1

提示:

  • 1 <= nums.length <= 2500
  • -10^4 <= nums[i] <= 104

#思路

首先通过本题大家要明确什么是子序列,“子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序”。

本题也是代码随想录中子序列问题的第一题,如果没接触过这种题目的话,本题还是很难的,甚至想暴力去搜索也不知道怎么搜。 子序列问题是动态规划解决的经典问题,当前下标i的递增子序列长度,其实和i之前的下表j的子序列长度有关系,那又是什么样的关系呢。

接下来,我们依然用动规五部曲来详细分析一波:

  1. dp[i]的定义

本题中,正确定义dp数组的含义十分重要。

dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

为什么一定表示 “以nums[i]结尾的最长递增子序” ,因为我们在 做 递增比较的时候,如果比较 nums[j] 和 nums[i] 的大小,那么两个递增子序列一定分别以nums[j]为结尾 和 nums[i]为结尾, 要不然这个比较就没有意义了,不是尾部元素的比较那么 如何算递增呢。

  1. 状态转移方程

位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。

所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值

  1. dp[i]的初始化

每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

  1. 确定遍历顺序

dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历。

j其实就是遍历0到i-1,那么是从前到后,还是从后到前遍历都无所谓,只要吧 0 到 i-1 的元素都遍历了就行了。 所以默认习惯 从前向后遍历。

遍历i的循环在外层,遍历j则在内层,代码如下:

for (int i = 1; i < nums.size(); i++) {
    for (int j = 0; j < i; j++) {
        if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
    }
    if (dp[i] > result) result = dp[i]; // 取长的子序列
}

  1. 举例推导dp数组

输入:[0,1,0,3,2],dp数组的变化如下:

300.最长上升子序列

如果代码写出来,但一直AC不了,那么就把dp数组打印出来,看看对不对!

以上五部分析完毕,C++代码如下:

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        vector<int> dp(nums.size(), 1);
        int result = 0;
        for (int i = 1; i < nums.size(); i++) {
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
            }
            if (dp[i] > result) result = dp[i]; // 取长的子序列
        }
        return result;
    }
};
  • 时间复杂度: O(n^2)
  • 空间复杂度: O(n)

#总结

本题最关键的是要想到dp[i]由哪些状态可以推出来,并取最大值,那么很自然就能想到递推公式:dp[i] = max(dp[i], dp[j] + 1);

子序列问题是动态规划的一个重要系列,本题算是入门题目,好戏刚刚开始!

 

674. 最长连续递增序列

力扣题目链接(opens new window)

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

  • 输入:nums = [1,3,5,4,7]
  • 输出:3
  • 解释:最长连续递增序列是 [1,3,5], 长度为3。尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。

示例 2:

  • 输入:nums = [2,2,2,2,2]
  • 输出:1
  • 解释:最长连续递增序列是 [2], 长度为1。

提示:

  • 0 <= nums.length <= 10^4
  • -10^9 <= nums[i] <= 10^9

#思路

本题相对于昨天的动态规划:300.最长递增子序列 (opens new window)最大的区别在于“连续”。

本题要求的是最长连续递增序列

#动态规划

动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]

注意这里的定义,一定是以下标i为结尾,并不是说一定以下标0为起始位置。

  1. 确定递推公式

如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。

即:dp[i] = dp[i - 1] + 1;

注意这里就体现出和动态规划:300.最长递增子序列 (opens new window)的区别!

因为本题要求连续递增子序列,所以就只要比较nums[i]与nums[i - 1],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。

既然不用j了,那么也不用两层for循环,本题一层for循环就行,比较nums[i] 和 nums[i - 1]。

这里大家要好好体会一下!

  1. dp数组如何初始化

以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

所以dp[i]应该初始1;

  1. 确定遍历顺序

从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。

本文在确定递推公式的时候也说明了为什么本题只需要一层for循环,代码如下:

for (int i = 1; i < nums.size(); i++) {
    if (nums[i] > nums[i - 1]) { // 连续记录
        dp[i] = dp[i - 1] + 1;
    }
}

  1. 举例推导dp数组

已输入nums = [1,3,5,4,7]为例,dp数组状态如下:

674.最长连续递增序列

注意这里要取dp[i]里的最大值,所以dp[2]才是结果!

以上分析完毕,C++代码如下:

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        int result = 1;
        vector<int> dp(nums.size() ,1);
        for (int i = 1; i < nums.size(); i++) {
            if (nums[i] > nums[i - 1]) { // 连续记录
                dp[i] = dp[i - 1] + 1;
            }
            if (dp[i] > result) result = dp[i];
        }
        return result;
    }
};

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

#贪心

这道题目也可以用贪心来做,也就是遇到nums[i] > nums[i - 1]的情况,count就++,否则count为1,记录count的最大值就可以了。

代码如下:

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        int result = 1; // 连续子序列最少也是1
        int count = 1;
        for (int i = 1; i < nums.size(); i++) {
            if (nums[i] > nums[i - 1]) { // 连续记录
                count++;
            } else { // 不连续,count从头开始
                count = 1;
            }
            if (count > result) result = count;
        }
        return result;
    }
};

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

#总结

本题也是动规里子序列问题的经典题目,但也可以用贪心来做,大家也会发现贪心好像更简单一点,而且空间复杂度仅是O(1)。

在动规分析中,关键是要理解和动态规划:300.最长递增子序列 (opens new window)的区别。

要联动起来,才能理解递增子序列怎么求,递增连续子序列又要怎么求

概括来说:不连续递增子序列的跟前0-i 个状态有关,连续递增的子序列只跟前一个状态有关

本篇我也把区别所在之处重点介绍了,关键在递推公式和遍历方法上,大家可以仔细体会一波!

 

718. 最长重复子数组

力扣题目链接(opens new window)

给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。

示例:

输入:

  • A: [1,2,3,2,1]
  • B: [3,2,1,4,7]
  • 输出:3
  • 解释:长度最长的公共子数组是 [3, 2, 1] 。

提示:

  • 1 <= len(A), len(B) <= 1000
  • 0 <= A[i], B[i] < 100

#思路

注意题目中说的子数组,其实就是连续子序列。

要求两个数组中最长重复子数组,如果是暴力的解法 只需要先两层for循环确定两个数组起始位置,然后再来一个循环可以是for或者while,来从两个起始位置开始比较,取得重复子数组的长度。

本题其实是动规解决的经典题目,我们只要想到 用二维数组可以记录两个字符串的所有比较情况,这样就比较好推 递推公式了。 动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )

此时细心的同学应该发现,那dp[0][0]是什么含义呢?总不能是以下标-1为结尾的A数组吧。

其实dp[i][j]的定义也就决定着,我们在遍历dp[i][j]的时候i 和 j都要从1开始。

那有同学问了,我就定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度。不行么?

行倒是行! 但实现起来就麻烦一点,需要单独处理初始化部分,在本题解下面的拓展内容里,我给出了 第二种 dp数组的定义方式所对应的代码和讲解,大家比较一下就了解了。

  1. 确定递推公式

根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。

即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

根据递推公式可以看出,遍历i 和 j 要从1开始!

  1. dp数组如何初始化

根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!

但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;

所以dp[i][0] 和dp[0][j]初始化为0。

举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。

  1. 确定遍历顺序

外层for循环遍历A,内层for循环遍历B。

那又有同学问了,外层for循环遍历B,内层for循环遍历A。不行么?

也行,一样的,我这里就用外层for循环遍历A,内层for循环遍历B了。

同时题目要求长度最长的子数组的长度。所以在遍历的时候顺便把dp[i][j]的最大值记录下来。

代码如下:

for (int i = 1; i <= nums1.size(); i++) {
    for (int j = 1; j <= nums2.size(); j++) {
        if (nums1[i - 1] == nums2[j - 1]) {
            dp[i][j] = dp[i - 1][j - 1] + 1;
        }
        if (dp[i][j] > result) result = dp[i][j];
    }
}

  1. 举例推导dp数组

拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:

718.最长重复子数组

以上五部曲分析完毕,C++代码如下:

// 版本一
class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
        int result = 0;
        for (int i = 1; i <= nums1.size(); i++) {
            for (int j = 1; j <= nums2.size(); j++) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }
                if (dp[i][j] > result) result = dp[i][j];
            }
        }
        return result;
    }
};

  • 时间复杂度:O(n × m),n 为A长度,m为B长度
  • 空间复杂度:O(n × m)

#滚动数组

在如下图中:

718.最长重复子数组

我们可以看出dp[i][j]都是由dp[i - 1][j - 1]推出。那么压缩为一维数组,也就是dp[j]都是由dp[j - 1]推出。

也就是相当于可以把上一层dp[i - 1][j]拷贝到下一层dp[i][j]来继续用。

此时遍历B数组的时候,就要从后向前遍历,这样避免重复覆盖

// 版本二
class Solution {
public:
    int findLength(vector<int>& A, vector<int>& B) {
        vector<int> dp(vector<int>(B.size() + 1, 0));
        int result = 0;
        for (int i = 1; i <= A.size(); i++) {
            for (int j = B.size(); j > 0; j--) {
                if (A[i - 1] == B[j - 1]) {
                    dp[j] = dp[j - 1] + 1;
                } else dp[j] = 0; // 注意这里不相等的时候要有赋0的操作
                if (dp[j] > result) result = dp[j];
            }
        }
        return result;
    }
};


 

  • 时间复杂度:$O(n × m)$,n 为A长度,m为B长度
  • 空间复杂度:$O(m)$

#拓展

前面讲了 dp数组为什么定义:以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。

我就定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度。不行么?

当然可以,就是实现起来麻烦一些。

如果定义 dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,那么 第一行和第一列毕竟要进行初始化,如果nums1[i] 与 nums2[0] 相同的话,对应的 dp[i][0]就要初始为1, 因为此时最长重复子数组为1。 nums2[j] 与 nums1[0]相同的话,同理。

所以代码如下:

// 版本三
class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
        int result = 0;

        // 要对第一行,第一列经行初始化
        for (int i = 0; i < nums1.size(); i++) if (nums1[i] == nums2[0]) dp[i][0] = 1;
        for (int j = 0; j < nums2.size(); j++) if (nums1[0] == nums2[j]) dp[0][j] = 1;

        for (int i = 0; i < nums1.size(); i++) {
            for (int j = 0; j < nums2.size(); j++) {
                if (nums1[i] == nums2[j] && i > 0 && j > 0) { // 防止 i-1 出现负数
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }
                if (dp[i][j] > result) result = dp[i][j];
            }
        }
        return result;
    }
};

大家会发现 这种写法 一定要多写一段初始化的过程。

而且为了让 if (dp[i][j] > result) result = dp[i][j]; 收集到全部结果,两层for训练一定从0开始遍历,这样需要加上 && i > 0 && j > 0的判断。

对于基础不牢的小白来说,在推导出转移方程后可能疑惑上述代码为什么要从i=0,j=0遍历而不是从i=1,j=1开始遍历,原因在于这里如果不是从i=0,j=0位置开始遍历,会漏掉如下样例结果:

nums1 = [70,39,25,40,7]
nums2 = [52,20,67,5,31]

当然,如果你愿意也可以使用如下代码,与上面那个c++是同一思路:

class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        int len1 = nums1.length;
        int len2 = nums2.length;
        int[][] result = new int[len1][len2];

        int maxresult = Integer.MIN_VALUE;

        for(int i=0;i<len1;i++){
            if(nums1[i] == nums2[0])
                result[i][0] = 1;
            if(maxresult<result[i][0])
                    maxresult = result[i][0];
        }

        for(int j=0;j<len2;j++){
            if(nums1[0] == nums2[j])
                result[0][j] = 1;
            if(maxresult<result[0][j])
                maxresult = result[0][j];
        }

        for(int i=1;i<len1;i++){
            for(int j=1;j<len2;j++){

                if(nums1[i]==nums2[j])
                    result[i][j] = result[i-1][j-1]+1;

                if(maxresult<result[i][j])
                    maxresult = result[i][j];

            }

        }

        return maxresult;
    }
}

对于小白来说一定要明确dp数组中初始化的数据是什么

整体而言相对于版本一来说还是多写了不少代码。而且逻辑上也复杂了一些。 优势就是dp数组的定义,更直观一点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1466130.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深入理解flinksql执行流程,calcite与catalog相关概念,扩展解析器实现语法的扩展

深入理解Flink Sql执行流程 1 Flink SQL 解析引擎1.1SQL解析器1.2Calcite处理流程1.2.1 SQL 解析阶段&#xff08;SQL–>SqlNode&#xff09;1.2.2 SqlNode 验证&#xff08;SqlNode–>SqlNode&#xff09;1.2.3 语义分析&#xff08;SqlNode–>RelNode/RexNode&#…

R的seurat和python的scanpy对比学习

现在的单细胞分析&#xff0c;往往避免不了scanpy的使用&#xff0c;我们可以通过对比seurat来学习scanpy 今天的格式怎么都改不了。。。手机阅读有点费劲&#xff0c;&#xff0c;推荐电脑阅读。 单细胞数据分析概览 单细胞分析&#xff0c;总流程 python教程 seurat教程 se…

ubuntu20配置protobuf 2.5.0

python安装protobuf包 sudo pip2 install protobuf2.5.0github克隆获取安装包 wget https://github.com/protocolbuffers/protobuf/releases/download/v2.5.0/protobuf-2.5.0.tar.gz解压并进入该目录 tar -zxvf Protobuf-2.5.0.tar.gz cd protobuf-2.5.0配置安装环境 sudo …

HTB pwn Dragon Army

逆向分析 程序使用了alloca函数扩大了栈区 此处可以泄露libc的地址 程序主要功能在下面 while ( 1 ){while ( 1 ){fflush(stdin);fflush(_bss_start);fprintf(_bss_start, "\n%sDragons: [%d/%d]%s\n\n", "\x1B[1;34m", v5, 13LL, "\x1B[1;37m"…

【洛谷题解】B2118 验证子串

题目链接&#xff1a;验证子串 - 洛谷 题目难度&#xff1a;入门 涉及知识点&#xff1a;STL函数 题意&#xff1a; 分析&#xff1a;用一个STL内置的find函数 AC代码&#xff1a; #include<bits/stdc.h> /*find用法&#xff1a;string s1&#xff0c;s2;int as1.f…

crmeb多门店商城系统二次开发 增加车辆车牌搜索功能、车辆公里数

1、增加的数据库 ALTER TABLE eb_store_order ADD cart_number VARCHAR(255) NOT NULL DEFAULT COMMENT 车牌 AFTER erp_order_id, ADD curmileage VARCHAR(255) NOT NULL DEFAULT COMMENT 当前里程 AFTER cart_number; ALTER TABLE eb_store_cart ADD cart_number VARCHAR(…

容器_Docker ( 04 )

容器_Docker ( 03 ) 解密云原生 - 集群概述 kubernetes概述 kubernetes起源 如果想要将docker应用于具体的业务实现 , 是存在困难的 – 编排, 管理和调度等各个方面 , 都不容易.于是 , 人们迫切需要一套管理系统 , 对docker及容器进行更高级更灵活的管理 , 于是kubernetes出…

Kotlin filterIsInstance filterNotNull forEach

Kotlin filterIsInstance filterNotNull forEach fun main(args: Array<String>) {val i1 MyItem(1, 1)val i2: MyItem? nullval i3: Int 3val i4 "4"val i5 nullval i6 MyItem(6, 6)val list mutableListOf<Any?>(i1, i2, i3, i4, i5, i6)lis…

蓝牙耳机哪个品牌质量好?2024超高性能机型比拼推荐

​无线耳机已经成为现代生活中的必备数码产品&#xff0c;尤其在感受到无线带来的自由后&#xff0c;很难再适应有线耳机的束缚。因此&#xff0c;耳机市场竞争激烈&#xff0c;各种类型和外观的耳机层出不穷。在此&#xff0c;我为大家总结了五款使用体验很不错的蓝牙耳机&…

静态时序分析:SDC约束命令set_driving_cell详解

相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 在上文中&#xff0c;我们不建议使用set_drive命令而是使用set_driving_cell命令&#xff0c;这是一个描述输入端口驱动能力更精确的方法。因为大多数情况下&…

黑马头条-day10

文章目录 app端文章搜索1、文章搜索1.1 ElasticSearch环境搭建1.2 索引库创建①需求分析②ES导入数据场景分析③创建索引和映射 1.3 索引数据同步①app文章历史数据导入ES②文章实时数据导入ES 1.4 文章搜索多条件复合查询①关键词搜索②搜索接口定义 2、搜索历史记录2.1 需求说…

免费的代理IP能用吗?

随着大家对代理IP的认知逐步加深&#xff0c;不可避免地&#xff0c;免费代理IP安全性和潜在风险也越来越关注&#xff0c;今天我们就来一探究竟&#xff0c;这到底是怎么一回事。 首先&#xff0c;我们得了解一下代理IP。 代理IP是指作为中介的服务器&#xff0c;它能够代理用…

java.lang.IllegalStateException: Promise already completed.

spark submit 提交作业的时候提示Promise already complete 完整日志如下 File "/data5/hadoop/yarn/local/usercache/processuser/appcache/application_1706192609294_136972/container_e41_1706192609294_136972_02_000001/py4j-0.10.6-src.zip/py4j/protocol.py"…

修改单据转换规则后保存报错提示

文章目录 修改单据转换规则后保存报错提示 修改单据转换规则后保存报错提示

软考系分之多媒体分类、声音、图像

文章目录 1、概要2、 媒体分类3、声音4、图像5、总结 1、概要 本篇重点介绍多媒体技术&#xff0c;包括多媒体分类、声音、图像。 2、 媒体分类 媒体主要分为5类&#xff0c;感觉媒体、表现媒体、表示媒体、传输媒体和存储媒体。感觉媒体&#xff0c;就是直接作用于人感官的媒…

android input命令支持多指触摸成果展示-千里马framework实战开发

hi input命令扩展提示部分 generic_x86_64:/ # input -h Error: Unknown command: -h Usage: input [<source>] <command> [<arg>...]The source…

体验LobeChat搭建私人聊天应用

LobeChat是什么 LobeChat 是开源的高性能聊天机器人框架&#xff0c;支持语音合成、多模态、可扩展的&#xff08;Function Call&#xff09;插件系统。支持一键免费部署私人 ChatGPT/LLM 网页应用程序。 地址&#xff1a;https://github.com/lobehub/lobe-chat 为什么要用Lobe…

如何快速导出vercel project中的环境变量

我在vercel中集成了某些插件或者链接了数据库&#xff0c;要如何快速的导出这些环境变量呢&#xff1f; 具体方法如下&#xff1a; npm i -g vercelvercel linkvercel env pull .env.local首先是安装vercel然后登录vercel 最后拉取环境变量到.env.local

2.22学习总结

1.营救 2.租用游艇 3.砍树 4.买礼物 5.刷题统计 砍树https://www.dotcpp.com/oj/problem3157.html 题目描述 给定一棵由 n 个结点组成的树以及 m 个不重复的无序数对 (a1, b1), (a2, b2), . . . , (am, bm)&#xff0c;其中 ai 互不相同&#xff0c;bi 互不相同&#xff0c;ai…

Ansible 简介及部署 基础模块学习 ansible部署rsync 及时监控远程同步

Ansible介绍&#xff1a; Ansible 是一个配置管理系统&#xff0c;当下最流行的批量自动化运维工具之一&#xff0c;它是一款开源的自动化工具&#xff0c;基于Python开发的配置管理和应用部署的工具。 Ansible 是基于模块工作的&#xff0c;它只是提供了一种运行框架&#xff…