目录
一.二进制部署k8s
常见的K8S安装部署方式:
k8s部署 二进制与高可用的区别
二.部署k8s
初始化操作:
每台node安装docker:
在 master01 节点上操作;
准备cfssl证书生成工具::
执行脚本文件:
拉入etcd压缩包:
创建用于存放 etcd 配置文件,命令文件,证书的目录
执行etcd.sh脚本:
将目录所有文件复制到node节点上:
修改node节点的etcd文件:
启动etcd服务:
检查etcd群集状态:
查看etcd集群成员列表:
编辑安装 Master 组件,准备生成CA证书:
创建用于生成CA证书、相关组件的证书和私钥的目录:
创建kubernetes工作目录:
复制CA证书、apiserver相关证书和私钥到 kubernetes工作目录的 ssl 子目录中
上传解压 kubernetes 压缩包:
复制master组件的关键命令文件到 kubernetes工作目录的 bin 子目录中:
解压master.zip:
启动 scheduler 服务:
启动 controller-manager 服务:
生成kubectl连接集群的kubeconfig文件:
过kubectl工具查看当前集群组件状态:
部署 Worker Node 组件:
创建kubernetes工作目录:
在 master01 节点上操作:
上传kubeconfig.sh文件到/opt/k8s/kubeconfig目录中:
授权,执行脚本:
RBAC授权,使用户 kubelet-bootstrap 能够有权限发起 CSR 请求证书:
master节点启动 kubelet 服务:
通过 CSR 请求:
在 node01 节点上操作:
启动proxy服务:
一.二进制部署k8s
常见的K8S安装部署方式:
Minikube是一个工具,可以在本地快速运行一个单节点微型K8S,仅用于学习、预览K8S的一些特性使用。
部署地址:https://kubernetes.io/docs/setup/minikube
Kubeadm也是一个工具,提供kubeadm init和kubeadm join,用于快速部署K8S集群,相对简单。
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
二进制安装部署
生产首选,从官方下载发行版的二进制包,手动部署每个组件和自签TLS证书,组成K8S集群,新手推荐。
https://github.com/kubernetes/kubernetes/releases
Kubeadm降低部署门槛,但屏蔽了很多细节,遇到问题很难排查。如果想更容易可控,推荐使用二进制包部署Kubernetes集群,虽然手动部署麻烦点,期间可以学习很多工作原理,也利于后期维护。
k8s部署 二进制与高可用的区别
二进制部署
部署难,管理方便,集群伸展性能好
更稳定,集群规模到达一定的规模(几百个节点、上万个Pod),二进制稳定性是要高于kubeadm部署
遇到故障,宿主机起来了,进程也会起来。
kubeadm部署
部署简单,管理难
是以一种容器管理容器的方式允许的组件及服务,故障恢复时间比二进制慢
遇到故障,启动宿主机,再启动进程,最后去启动容器,集群才能恢复,速度比二进制慢
二.部署k8s
k8s master节点:192.168.233.10,20
k8s node节点:192.168.233.30,40 (容器引擎为docker)
etcd集群:192.168.233.10,30,40
负载均衡nginx+keepalive01(master): 192.168.233.50
负载均衡nginx+keepalive02(backup):192.168.233.60
初始化操作:
关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
关闭selinux
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config
关闭swap
swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab
根据规划设置主机名
hostnamectl set-hostname master01
hostnamectl set-hostname node01
hostnamectl set-hostname node02
在master添加hosts
cat >> /etc/hosts << EOF
192.168.233.10 master01
192.168.233.30 node01
192.168.233.40 node02
EOF
调整内核参数
cat > /etc/sysctl.d/k8s.conf << EOF
#开启网桥模式,可将网桥的流量传递给iptables链
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
#关闭ipv6协议
net.ipv6.conf.all.disable_ipv6=1
net.ipv4.ip_forward=1
EOFsysctl --system
时间同步
yum install ntpdate -y
ntpdate time.windows.com
每台node安装docker:
yum install -y yum-utils device-mapper-persistent-data lvm2
yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
切换到docker目录下,添加文件:
{
"registry-mirrors": ["https://6ijb8ubo.mirror.aliyuncs.com"],
"exec-opts": ["native.cgroupdriver=systemd"],
"log-driver":"json-file",
"log-opts":{
"max-size":"500m","max-file":"3"
}
}
.
安装设置为开机自动启动:
yum install -y docker-ce docker-ce-cli containerd.io
systemctl start docker.service
systemctl enable docker.service
在 master01 节点上操作;
准备cfssl证书生成工具::
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfssl
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O /usr/local/bin/cfssljson
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -O /usr/local/bin/cfssl-certinfochmod +x /usr/local/bin/*
创建工作目录:
添加脚本文件:
#!/bin/bash
#配置证书生成策略,让 CA 软件知道颁发有什么功能的证书,生成用来签发其他组件证书的根证书
cat > ca-config.json <<EOF
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
]
}
}
}
}
EOF
#ca-config.json:可以定义多个 profiles,分别指定不同的过期时间、使用场景等参数;
#后续在签名证书时会使用某个 profile;此实例只有一个 www 模板。
#expiry:指定了证书的有效期,87600h 为10年,如果用默认值一年的话,证书到期后集群会立即宕掉
#signing:表示该证书可用于签名其它证书;生成的 ca.pem 证书中 CA=TRUE;
#key encipherment:表示使用非对称密钥加密,如 RSA 加密;
#server auth:表示client可以用该 CA 对 server 提供的证书进行验证;
#client auth:表示server可以用该 CA 对 client 提供的证书进行验证;
#注意标点符号,最后一个字段一般是没有逗号的。
#-----------------------
#生成CA证书和私钥(根证书和私钥)
cat > ca-csr.json <<EOF
{
"CN": "etcd",
"key": {
"algo": "rsa",
"size": 2048
{
"C": "CN",
"L": "Beijing",
"ST": "Beijing"
}
]
}
EOF
#CN:Common Name,浏览器使用该字段验证网站或机构是否合法,一般写的是域名
#key:指定了加密算法,一般使用rsa(size:2048)
#C:Country,国家
#ST:State,州,省
#L:Locality,地区,城市
#O: Organization Name,组织名称,公司名称
#OU: Organization Unit Name,组织单位名称,公司部门
cfssl gencert -initca ca-csr.json | cfssljson -bare ca
#生成的文件:
#ca-key.pem:根证书私钥
#ca.pem:根证书
#ca.csr:根证书签发请求文件
#注意:CSRJSON 文件用的是相对路径,所以 cfssl 的时候需要 csr 文件的路径下执行,也可以指定为绝对路径。
#cfssljson 将 cfssl 生成的证书(json格式)变为文件承载式证书,-bare 用于命名生成的证书文件。
#-----------------------
{
"CN": "etcd",
"hosts": [
"192.168.233.10",
"192.168.233.30",
"192.168.233.40"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "BeiJing",
"ST": "BeiJing"
}
]
}
EOF
#hosts:将所有 etcd 集群节点添加到 host 列表,需要指定所有 etcd 集群的节点 ip 或主机名不能使用网段,>新增 etcd 服务器需要重新签发证书。
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=www server-csr.json | cfssljson -bare server
#生成的文件:
#server.csr:服务器的证书请求文件
#server-key.pem:服务器的私钥
#server.pem:服务器的数字签名证书
#-config:引用证书生成策略文件 ca-config.json
#-profile:指定证书生成策略文件中的的使用场景,比如 ca-config.json 中的 www
#!/bin/bash
#example: ./etcd.sh etcd01 192.168.233.10 etcd02=https://192.168.233.30:2380,etcd03=https://192.168.233.40:2380
#创建etcd配置文件/opt/etcd/cfg/etcd
ETCD_NAME=$1
ETCD_IP=$2
ETCD_CLUSTER=$3
WORK_DIR=/opt/etcd
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://${ETCD_IP}:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://${ETCD_IP}:2379"
ETCD_INITIAL_CLUSTER="etcd01=https://${ETCD_IP}:2380,${ETCD_CLUSTER}"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
EOF
#Member:成员配置
#ETCD_NAME:节点名称,集群中唯一。成员名字,集群中必须具备唯一性,如etcd01
#Clustering:集群配置
#ETCD_INITIAL_CLUSTER_TOKEN:集群Token。用于区分不同集群。本地如有多个集群要设为不同
#ETCD_INITIAL_CLUSTER_STATE:加入集群的当前状态,new是新集群,existing表示加入已有集群。
#创建etcd.service服务管理文件
cat > /usr/lib/systemd/system/etcd.service <<EOF
[Unit]
Description=Etcd Server
After=network.target
After=network-online.target
Wants=network-online.target
[Service]
Type=notify
EnvironmentFile=${WORK_DIR}/cfg/etcd
ExecStart=${WORK_DIR}/bin/etcd \
--cert-file=${WORK_DIR}/ssl/server.pem \
--key-file=${WORK_DIR}/ssl/server-key.pem \
--trusted-ca-file=${WORK_DIR}/ssl/ca.pem \
--peer-cert-file=${WORK_DIR}/ssl/server.pem \
--peer-key-file=${WORK_DIR}/ssl/server-key.pem \
--peer-trusted-ca-file=${WORK_DIR}/ssl/ca.pem \
--logger=zap \
--enable-v2
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
#--enable-v2:开启 etcd v2 API 接口。当前 flannel 版本不支持 etcd v3 通信
#--logger=zap:使用 zap 日志框架。zap.Logger 是go语言中相对日志库中性能最高的
#--peer开头的配置项用于指定集群内部TLS相关证书(peer 证书),这里全部都使用同一套证书认证
#不带--peer开头的的参数是指定 etcd 服务器TLS相关证书(server 证书),这里全部都使用同一套证书认证
systemctl daemon-reload
systemctl enable etcd
systemctl restart etcd
执行脚本文件:
./etcd-cert.sh
移动文件:
mkdir etcd-cert
mv ca* server* etcd-cert
拉入etcd压缩包:
解压:
tar zxvf etcd-v3.4.26-linux-amd64.tar.gz
创建用于存放 etcd 配置文件,命令文件,证书的目录
mkdir -p /opt/etcd/{cfg,bin,ssl}
.切换到k8s中将命令移动到bin下:
mv etcd etcdctl /opt/etcd/bin/
复制etcd-cert下的.pem结尾文件到ssl目录下:
cp /opt/k8s/etcd-cert/*.pem /opt/etcd/ssl/
执行etcd.sh脚本:
./etcd.sh etcd01 192.168.233.10 etcd02=https://192.168.233.30:2380,etcd03=https://192.168.233.40:2380
查看端口:
将目录所有文件复制到node节点上:
scp -r /opt/etcd/ root@192.168.233.30:/opt/
scp -r /opt/etcd/ root@192.168.233.40:/opt/
scp /usr/lib/systemd/system/etcd.service root@192.168.233.30:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/etcd.service root@192.168.233.40:/usr/lib/systemd/system/
修改node节点的etcd文件:
vim /opt/etcd/cfg/etcd
启动etcd服务:
systemctl start etcd
systemctl enable etcd
systemctl status etcd
检查etcd群集状态:
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.233.10:2379,https://192.168.233.30:2379,https://192.168.233.40:2379" endpoint health --write-out=table
查看etcd集群成员列表:
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.233.10:2379,https://192.168.233.30:2379,https://192.168.233.40:2379" --write-out=table member list
安装 Master 组件,准备生成CA证书:
#!/bin/bash
#配置证书生成策略,让 CA 软件知道颁发有什么功能的证书,生成用来签发其他组件证书的根证书
cat > ca-config.json <<EOF
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"kubernetes": {
"expiry": "87600h",
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
]
}
}
}
}
EOF
#生成CA证书和私钥(根证书和私钥)
cat > ca-csr.json <<EOF
{
"CN": "kubernetes",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "Beijing",
"ST": "Beijing",
"O": "k8s",
"OU": "System"
}
]
}
EOF
#!/bin/bash
#配置证书生成策略,让 CA 软件知道颁发有什么功能的证书,生成用来签发其他组件证书的根证书
cat > ca-config.json <<EOF
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"kubernetes": {
"expiry": "87600h",
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
]
}
}
}
}
EOF
#生成CA证书和私钥(根证书和私钥)
cat > ca-csr.json <<EOF
{
"CN": "kubernetes",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "Beijing",
"ST": "Beijing",
"O": "k8s",
"OU": "System"
}
]
}
EOF
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -
#-----------------------
#生成 apiserver 的证书和私钥(apiserver和其它k8s组件通信使用)
#hosts中将所有可能作为 apiserver 的 ip 添加进去,后面 keepalived 使用的 VIP 也要加入
cat > apiserver-csr.json <<EOF
{
"CN": "kubernetes",
"hosts": [
"10.0.0.1",
"127.0.0.1",
"192.168.233.10",
"192.168.233.20",
"192.168.233.100",
"192.168.233.50",
"192.168.233.60",
"kubernetes",
"kubernetes.default",
"kubernetes.default.svc",
"kubernetes.default.svc.cluster",
"kubernetes.default.svc.cluster.local"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "BeiJing",
"ST": "BeiJing",
"O": "k8s",
"OU": "System"
}
]
}
EOF
#-----------------------
#生成 kubectl 连接集群的证书和私钥(kubectl 和 apiserver 通信使用)
cat > admin-csr.json <<EOF
{
"CN": "admin",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "BeiJing",
"ST": "BeiJing",
"O": "system:masters",
"OU": "System"
}
]
}
EOF
#-----------------------
#生成 kube-proxy 的证书和私钥(kube-proxy 和 apiserver 通信使用)
cat > kube-proxy-csr.json <<EOF
{
"CN": "system:kube-proxy",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "BeiJing",
"ST": "BeiJing",
"O": "k8s",
"OU": "System"
}
]
}
EOF
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy
创建用于生成CA证书、相关组件的证书和私钥的目录:
移动脚本文件到目录中;
执行文件:
创建kubernetes工作目录:
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}
复制CA证书、apiserver相关证书和私钥到 kubernetes工作目录的 ssl 子目录中
cp ca*pem apiserver*pem /opt/kubernetes/ssl/
上传解压 kubernetes 压缩包:
tar xf kubernetes-server-linux-amd64.tar.gz
复制master组件的关键命令文件到 kubernetes工作目录的 bin 子目录中:
cp kube-apiserver kubectl kube-controller-manager kube-scheduler /opt/kubernetes/bin/
ln -s /opt/kubernetes/bin/* /usr/local/bin/
获取随机数前16个字节内容,以十六进制格式输出,并删除其中空格:
head -c 16 /dev/urandom | od -An -t x | tr -d ' '
生成 token.csv 文件,按照 Token序列号,用户名,UID,用户组 的格式生成:
#!/bin/bash
#获取随机数前16个字节内容,以十六进制格式输出,并删除其中空格
BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ')
#生成 token.csv 文件,按照 Token序列号,用户名,UID,用户组 的格式生成
cat > /opt/kubernetes/cfg/token.csv <<EOF
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"
EOF
解压master.zip:
授权:
二进制文件、token、证书都准备好后,开启 apiserver 服务
./apiserver.sh 192.168.233.10 https://192.168.233.10:2379,https://192.168.233.30:2379,https://192.168.233.40:2379
安全端口6443用于接收HTTPS请求,用于基于Token文件或客户端证书等认证
netstat -natp | grep 6443
启动 scheduler 服务:
#!/bin/bash
##创建 kube-scheduler 启动参数配置文件
MASTER_ADDRESS=$1
cat >/opt/kubernetes/cfg/kube-scheduler <<EOF
KUBE_SCHEDULER_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--leader-elect=true \\
--kubeconfig=/opt/kubernetes/cfg/kube-scheduler.kubeconfig \\
--bind-address=$MASTER_ADDRESS"
EOF
#-?kubeconfig:连接 apiserver 用的配置文件,用于识别 k8s 集群
#--leader-elect=true:当该组件启动多个时,自动启动 leader 选举
#k8s 中 Controller-Manager 和 Scheduler 的选主逻辑:k8s 中的 etcd 是整个集群所有状态信息的存储,涉及>数据的读写和多个 etcd 之间数据的同步,对数据的一致性要求严格,所以使用较复杂的 raft 算法来选择用于提>交数据的主节点。而 apiserver 作为集群入口,本身是无状态的 web 服务器,多个 apiserver 服务之间直接负载
请求并不需要做选主。Controller-Manager 和 Scheduler 作为任务类型的组件,比如 controller-manager 内置>的 k8s 各种资源对象的控制器实时的 watch apiserver 获取对象最新的变化事件做期望状态和实际状态调整,scheduler watch 未绑定节点的 pod 做节点选择, 显然多个这些任务同时工作是完全没有必要的,所以 controller-manager 和 scheduler 也是需要选主的,但是选主逻辑和 etcd 不一样的,这里只需要保证从多个 controller-manager 和 scheduler 之间选出一个 leader 进入工作状态即可,而无需考虑它们之间的数据一致和同步。
##生成kube-scheduler证书
#创建证书请求文件
cat > kube-scheduler-csr.json << EOF
{
"CN": "system:kube-scheduler",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "BeiJing",
"ST": "BeiJing",
"O": "system:masters",
"OU": "System"
}
]
}
EOF
#生成证书和私钥
#生成kubeconfig配置文件
KUBE_CONFIG="/opt/kubernetes/cfg/kube-scheduler.kubeconfig"
KUBE_APISERVER="https://192.168.233.10:6443"
#配置kubernetes集群参数
kubectl config set-cluster kubernetes \
--certificate-authority=/opt/kubernetes/ssl/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=${KUBE_CONFIG}
#配置客户端认证参数
kubectl config set-credentials kube-scheduler \
--client-certificate=./kube-scheduler.pem \
--client-key=./kube-scheduler-key.pem \
--embed-certs=true \
--kubeconfig=${KUBE_CONFIG}
#设置上下文参数
kubectl config set-context default \
--cluster=kubernetes \
--user=kube-scheduler \
--kubeconfig=${KUBE_CONFIG}
#设置默认上下文
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}
##创建 kube-scheduler.service 服务管理文件
cat >/usr/lib/systemd/system/kube-scheduler.service <<EOF
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-scheduler
ExecStart=/opt/kubernetes/bin/kube-scheduler \$KUBE_SCHEDULER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF
systemctl daemon-reload
systemctl enable kube-scheduler
systemctl restart kube-scheduler
启动脚本:
启动 controller-manager 服务:
#!/bin/bash
##创建 kube-controller-manager 启动参数配置文件
MASTER_ADDRESS=$1
cat >/opt/kubernetes/cfg/kube-controller-manager <<EOF
KUBE_CONTROLLER_MANAGER_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--leader-elect=true \\
--kubeconfig=/opt/kubernetes/cfg/kube-controller-manager.kubeconfig \\
--bind-address=$MASTER_ADDRESS \\
--allocate-node-cidrs=true \\
--cluster-cidr=10.244.0.0/16 \\
--service-cluster-ip-range=10.0.0.0/24 \\
--cluster-signing-cert-file=/opt/kubernetes/ssl/ca.pem \\
--cluster-signing-key-file=/opt/kubernetes/ssl/ca-key.pem \\
--root-ca-file=/opt/kubernetes/ssl/ca.pem \\
--service-account-private-key-file=/opt/kubernetes/ssl/ca-key.pem \\
--cluster-signing-duration=87600h0m0s"
EOF
#––leader-elect:当该组件启动多个时,自动选举(HA)
#-–kubeconfig:连接 apiserver 用的配置文件,用于识别 k8s 集群
##生成kube-controller-manager证书
#创建证书请求文件
cat > kube-controller-manager-csr.json << EOF
{
"CN": "system:kube-controller-manager",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "BeiJing",
"ST": "BeiJing",
"O": "system:masters",
"OU": "System"
}
]
}
EOF
#生成证书和私钥
#生成kubeconfig配置文件
KUBE_CONFIG="/opt/kubernetes/cfg/kube-controller-manager.kubeconfig"
KUBE_APISERVER="https://192.168.233.10:6443"
#配置kubernetes集群参数
kubectl config set-cluster kubernetes \
--certificate-authority=/opt/kubernetes/ssl/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=${KUBE_CONFIG}
#配置客户端认证参数
kubectl config set-credentials kube-controller-manager \
--client-certificate=./kube-controller-manager.pem \
--client-key=./kube-controller-manager-key.pem \
--embed-certs=true \
--kubeconfig=${KUBE_CONFIG}
#设置上下文参数
kubectl config set-context default \
--cluster=kubernetes \
--user=kube-controller-manager \
--kubeconfig=${KUBE_CONFIG}
#设置默认上下文
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}
##创建 kube-controller-manager.service 服务管理文件
cat >/usr/lib/systemd/system/kube-controller-manager.service <<EOF
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-controller-manager
ExecStart=/opt/kubernetes/bin/kube-controller-manager \$KUBE_CONTROLLER_MANAGER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF
systemctl daemon-reload
systemctl enable kube-controller-manager
systemctl restart kube-controller-manager
执行脚本:
./controller-manager.sh 192.168.233.10
生成kubectl连接集群的kubeconfig文件:
#!/bin/bash
mkdir /root/.kube
KUBE_CONFIG="/root/.kube/config"
KUBE_APISERVER="https://192.168.233.10:6443"
#切换到k8s证书目录操作
cd /opt/k8s/k8s-cert/
--certificate-authority=/opt/kubernetes/ssl/ca.pem \
--embed-certs=true \
--client-certificate=./admin.pem \
--client-key=./admin-key.pem \
kubectl config set-context default \
--kubeconfig=${KUBE_CONFIG}
#设置默认环境上下文
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}
#生成的 kubeconfig 被保存到 /root/.kube/config 文件
#########################################################
#集群参数
#本段设置了所需要访问的集群的信息。使用set-cluster设置了需要访问的集群,如上为kubernetes,这只是个名>称,实际为--server指向的apiserver;--certificate-authority设置了该集群的公钥;--embed-certs为true表示
将--certificate-authority证书写入到kubeconfig中;--server则表示该集群的kube-apiserver地址
#用户参数
#本段主要设置用户的相关信息,主要是用户证书。如上的用户名为admin,证书为:/opt/kubernetes/ssl/admin.pem,私钥为:/opt/kubernetes/ssl/admin-key.pem。注意客户端的证书首先要经过集群CA的签署,否则不会被集群
认可。此处使用的是ca认证方式,也可以使用token认证,如kubelet的 TLS Boostrap 机制下的 bootstrapping 使
用的就是token认证方式。上述kubectl使用的是ca认证,不需要token字段
#上下文参数
#集群参数和用户参数可以同时设置多对,在上下文参数中将集群参数和用户参数关联起来。上面的上下文名称为default,集群为kubenetes,用户为admin,表示使用admin的用户凭证来访问kubenetes集群的default命名空间,也>可以增加--namspace来指定访问的命名空间。
#最后使用 kubectl config use-context default 来使用名为 default 的环境项来作为配置。 如果配置了多个环
境项,可以通过切换不同的环境项名字来访问到不同的集群环境。
#########################################################
执行脚本:
查看文件:
过kubectl工具查看当前集群组件状态:
kubectl get cs
查看版本信息:
kubectl version
绑定默认cluster-admin管理员集群角色,授权kubectl访问集群:
kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous
部署 Worker Node 组件:
在所有 node 节点上操作30,40:
创建kubernetes工作目录:
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}
上传 node.zip 到 /opt 目录中,解压 node.zip 压缩包:
#!/bin/bash
NODE_ADDRESS=$1
DNS_SERVER_IP=${2:-"10.0.0.2"}
cat >/opt/kubernetes/cfg/kubelet <<EOF
KUBELET_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--hostname-override=node01 \\
--network-plugin=cni \\
--kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \\
--bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \\
--config=/opt/kubernetes/cfg/kubelet.config \\
--cert-dir=/opt/kubernetes/ssl \\
--pod-infra-container-image=registry.cn-hangzhou.aliyuncs.com/google_containers/pause-amd64:3.2"
EOF
#--network-plugin:启用CNI
#--bootstrap-kubeconfig:指定连接 apiserver 的 bootstrap.kubeconfig 文件
#--config:指定kubelet配置文件的路径,启动kubelet时将从此文件加载其配置
#--cert-dir:指定master颁发的kubelet证书生成目录
#----------------------
cat >/opt/kubernetes/cfg/kubelet.config <<EOF
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
address: ${NODE_ADDRESS}
port: 10250
readOnlyPort: 10255
cgroupDriver: systemd
clusterDNS:
- ${DNS_SERVER_IP}
clusterDomain: cluster.local
failSwapOn: false
authentication:
anonymous:
enabled: true
EOF
#PS:当命令行参数与此配置文件(kubelet.config)有相同的值时,就会覆盖配置文件中的该值。
#----------------------
#创建 kubelet.service 服务管理文件
cat >/usr/lib/systemd/system/kubelet.service <<EOF
[Unit]
Description=Kubernetes Kubelet
After=docker.service
Requires=docker.service
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kubelet
ExecStart=/opt/kubernetes/bin/kubelet \$KUBELET_OPTS
Restart=on-failure
KillMode=process
[Install]
WantedBy=multi-user.target
EOF
systemctl daemon-reload
systemctl enable kubelet
systemctl restart kubelet
#!/bin/bash
NODE_ADDRESS=$1
#创建 kube-proxy 启动参数配置文件
cat >/opt/kubernetes/cfg/kube-proxy <<EOF
KUBE_PROXY_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--hostname-override=${NODE_ADDRESS} \\
--cluster-cidr=10.244.0.0/16 \\
--proxy-mode=ipvs \\
--kubeconfig=/opt/kubernetes/cfg/kube-proxy.kubeconfig"
EOF
#--kubeconfig: 指定连接 apiserver 的 kubeconfig 文件
#rr: round-robin,轮询。
#lc: least connection,最小连接数。
#dh: destination hashing,目的地址哈希。
#sh: source hashing ,原地址哈希。
#sed: shortest expected delay,最短期望延时。
#nq: never queue ,永不排队。
#----------------------
#创建 kube-proxy.service 服务管理文件
cat >/usr/lib/systemd/system/kube-proxy.service <<EOF
[Unit]
Description=Kubernetes Proxy
After=network.target
[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-proxy
ExecStart=/opt/kubernetes/bin/kube-proxy \$KUBE_PROXY_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF
systemctl daemon-reload
systemctl enable kube-proxy
systemctl restart kube-proxy
#!/bin/bash
NODE_ADDRESS=$1
#创建 kubelet 启动参数配置文件
cat >/opt/kubernetes/cfg/kubelet <<EOF
KUBELET_OPTS="--logtostderr=false \\
--hostname-override=node02 \\
--network-plugin=cni \\
--kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \\
--bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \\
--config=/opt/kubernetes/cfg/kubelet.config \\
--cert-dir=/opt/kubernetes/ssl \\
--pod-infra-container-image=registry.cn-hangzhou.aliyuncs.com/google_containers/pause-amd64:3.2"
EOF
#--network-plugin:启用CNI
#--bootstrap-kubeconfig:指定连接 apiserver 的 bootstrap.kubeconfig 文件
#--config:指定kubelet配置文件的路径,启动kubelet时将从此文件加载其配置
#--cert-dir:指定master颁发的kubelet证书生成目录
#----------------------
cat >/opt/kubernetes/cfg/kubelet.config <<EOF
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
address: ${NODE_ADDRESS}
port: 10250
readOnlyPort: 10255
cgroupDriver: systemd
clusterDNS:
- ${DNS_SERVER_IP}
clusterDomain: cluster.local
failSwapOn: false
authentication:
anonymous:
enabled: true
EOF
#PS:当命令行参数与此配置文件(kubelet.config)有相同的值时,就会覆盖配置文件中的该值。
#----------------------
#创建 kubelet.service 服务管理文件
cat >/usr/lib/systemd/system/kubelet.service <<EOF
[Unit]
Description=Kubernetes Kubelet
After=docker.service
Requires=docker.service
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kubelet
ExecStart=/opt/kubernetes/bin/kubelet \$KUBELET_OPTS
Restart=on-failure
KillMode=process
[Install]
WantedBy=multi-user.target
EOF
systemctl daemon-reload
systemctl enable kubelet
systemctl restart kubelet
#!/bin/bash
NODE_ADDRESS=$1
#创建 kube-proxy 启动参数配置文件
cat >/opt/kubernetes/cfg/kube-proxy <<EOF
KUBE_PROXY_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--hostname-override=${NODE_ADDRESS} \\
--cluster-cidr=10.244.0.0/16 \\
--proxy-mode=ipvs \\
--kubeconfig=/opt/kubernetes/cfg/kube-proxy.kubeconfig"
EOF
#--kubeconfig: 指定连接 apiserver 的 kubeconfig 文件
#rr: round-robin,轮询。
#lc: least connection,最小连接数。
#dh: destination hashing,目的地址哈希。
#sh: source hashing ,原地址哈希。
#sed: shortest expected delay,最短期望延时。
#nq: never queue ,永不排队。
#----------------------
#创建 kube-proxy.service 服务管理文件
cat >/usr/lib/systemd/system/kube-proxy.service <<EOF
[Unit]
Description=Kubernetes Proxy
After=network.target
[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-proxy
ExecStart=/opt/kubernetes/bin/kube-proxy \$KUBE_PROXY_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF
systemctl daemon-reload
systemctl enable kube-proxy
systemctl restart kube-proxy
授权:
在 master01 节点上操作:
把 kubelet、kube-proxy 拷贝到 node 节点;
cd /opt/k8s/kubernetes/server/bin
scp kubelet kube-proxy root@192.168.233.30:/opt/kubernetes/bin/
scp kubelet kube-proxy root@192.168.233.40:/opt/kubernetes/bin/
上传kubeconfig.sh文件到/opt/k8s/kubeconfig目录中:
#!/bin/bash
#example: kubeconfig 192.168.233.10 /opt/k8s/k8s-cert/
#创建bootstrap.kubeconfig文件
BOOTSTRAP_TOKEN=$(awk -F ',' '{print $1}' /opt/kubernetes/cfg/token.csv)
APISERVER=$1
SSL_DIR=$2
export KUBE_APISERVER="https://$APISERVER:6443"
# 设置集群参数
kubectl config set-cluster kubernetes \
--certificate-authority=$SSL_DIR/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=bootstrap.kubeconfig
#--embed-certs=true:表示将ca.pem证书写入到生成的bootstrap.kubeconfig文件中
# 设置客户端认证参数,kubelet 使用 bootstrap token 认证
kubectl config set-credentials kubelet-bootstrap \
--token=${BOOTSTRAP_TOKEN} \
--kubeconfig=bootstrap.kubeconfig
# 设置上下文参数
kubectl config set-context default \
--cluster=kubernetes \
--user=kubelet-bootstrap \
--kubeconfig=bootstrap.kubeconfig
# 使用上下文参数生成 bootstrap.kubeconfig 文件
kubectl config use-context default --kubeconfig=bootstrap.kubeconfig
#----------------------
#创建kube-proxy.kubeconfig文件
# 设置集群参数
kubectl config set-cluster kubernetes \
--certificate-authority=$SSL_DIR/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=kube-proxy.kubeconfig
# 设置客户端认证参数,kube-proxy 使用 TLS 证书认证
kubectl config set-credentials kube-proxy \
--client-certificate=$SSL_DIR/kube-proxy.pem \
--client-key=$SSL_DIR/kube-proxy-key.pem \
--embed-certs=true \
--kubeconfig=kube-proxy.kubeconfig
# 设置上下文参数
kubectl config set-context default \
--cluster=kubernetes \
--user=kube-proxy \
--kubeconfig=kube-proxy.kubeconfig
# 使用上下文参数生成 kube-proxy.kubeconfig 文件
kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig
授权,执行脚本:
chmod +x kubeconfig.sh
./kubeconfig.sh 192.168.233.10 /opt/k8s/k8s-cert/
把配置文件 bootstrap.kubeconfig、kube-proxy.kubeconfig 拷贝到 node 节点:
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.233.30:/opt/kubernetes/cfg/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.233.40:/opt/kubernetes/cfg/
查看一下:
RBAC授权,使用户 kubelet-bootstrap 能够有权限发起 CSR 请求证书:
kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap
master节点启动 kubelet 服务:
在 master01 节点上操作,通过 CSR 请求:
通过 CSR 请求:
kubectl certificate approve node-csr-vH5p3H5QliAUh9WjCnwXPDb84pFhcj-FrHiTIRDeeU8
Approved,Issued 表示已授权 CSR 请求并签发证书:
查看节点,由于网络插件还没有部署,节点会没有准备就绪 NotReady:
kubectl get node
在 node01 节点上操作:
加载 ip_vs 模块:
ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done
启动proxy服务:
./proxy.sh 192.168.233.30
master节点:
node02上启动kubelet:
master节点通过 CSR 请求:
node02上启动proxy: