一种基于动态水位值的Flink调度优化算法(flink1.5以前),等同于实现flink的Credit-based反压原理

news2025/1/11 9:53:26

优化flink反压

  • 说明
  • 1 flink反压介绍
    • 1.1 介绍
    • 1.2 大数据系统反压现状
    • 1.4 flink task与task之间的反压
    • 1.5 netty水位机制作用分析
  • 2 反压优化算法
  • 3 重点! 但是 可但是 flink1.5以后的反压过程。
  • 4 flink反压问题的查找瓶颈办法

说明

首先说明,偶然看了个论文,发现 flink优化原来比我想象中的更简单,得到了一些启发,所以写下这篇帖子,供大家共同学习。
看到的论文是《计算机科学与应用》21年11月的一篇 名字就叫做 : 一种基于动态水位值的Flink调度优化算法。感兴趣的小伙伴可以自己看一下 ,很短没多少字。
但是 很离谱的是 这篇论文中的方法在flink1.5以后的反压机制中早就实现了,我不知道 这篇论文为什么能发表在21年11月的期刊上,也可能是我看论文看的不对?反正就当学习个人实现 flink1.5的反压机制更新了

1 flink反压介绍

1.1 介绍

首先说下flink反压,其实就是flink流式处理中一种动态反馈机制,一般是在实时数据处理的过程中,上游节点的生产速度大于下游节点的消费速度,提出反馈来提醒上游,下游消费不过来了。

如垃圾回收不及时或者停顿可能使得流入系统的数据快速堆积、大促或秒杀活动时出现的流量陡增等都会造成反压。如不对反压及时处理,将会使系统资源耗尽甚至导致系统崩溃。

1.2 大数据系统反压现状

现有大数据实时处理系统处理反压问题方面,Storm 是通过监控Bolt中的接收队列负载情况,如果超过高水位值就会将反压信息写到Zookeeper,Zookeeper上的watch会通知该拓扑的所有Worker都进入反压状态,最后Spout停止发送tuple。J Storm采用逐级降速的方式来处理反压,使用Topology Master替代Zookeeper来协调拓扑进入反压状态,效果较Storm更为稳定。Spark Streaming根据批处理时间(Batch Processing Time)和批次间隔(Batch Interval,即Batch Duration)的信息来动态调整系统的摄入速率,从而完成其反压工作。

在Flink优化方面,根据论文文献目前有几种:

  1. 使用Flink执行一种传统堆序优化后的算法Heap Optimize,增加了Flink的吞吐量 。
  2. 针对Flink默认的先来先服务的任务调度策略,通过资源感知,将待执行任务分配到最佳节点进行计算,优化了Flink的负载均衡。
  3. 根据任务间数据流的大小确定拓扑边的权重,以生成关键路径,大幅缩减了Flink节点间的通信开销。
  4. 把Flink从原来的CPU迁移扩展到异构的CPU-GPU集群,在并行计算、内存管理及通信策略方面极大地提高了Flink的计算能力。

目前诸多的研究当中没有Flink反压方面的问题,当Flink面临远端传输问题时,其所依托的Netty所采用的是一种静态的水位机制,这使得Flink在面临颠簸状态数据的远程传输问题时,容易出现反复反压的情况,极大地影响了Flink传输数据的效率,故而本文将针对此问题展开研究。

例如 从我的工作经历来说,flink做简单的etl操作 ,接受kafka 数据 插入es中,数据量 大小时大时小时,实际使用来看 spark streaming 性能远远好于flink 就是因为 flink的反压

1.4 flink task与task之间的反压

Flink的反压原理如下图所示,假如Flink的一个Job分为Task A、B、C,其中Task A是Source Task、Task B处理数据、Task C为Sink Task。假如Task C由于各种原因吞吐量降低,会将负载信息反馈给Task B,Task B会降低向Task C发送数据的速率,此时若Task B还保持从Task A读取数据,数据会把Task B的Send Buffer和Receive Buffer撑爆,导致OOM或者丢失数据。所以,当Task B的Send Buffer和Receive Buffer被用完后,Task B会用同样的原理将负载信息反馈给Task A,Task A收到Task B的负载信息后,会降低给Task B发送数据的速率,以此类推。

图1

Flink反压存在Task内与跨Task两种情况,本文已在图1中标注,本文主要是针对Flink跨Task传输进行反压优化,故下文主要对Flink跨Task传输进行介绍:图2展示了Flink网络传输时的数据流向,可以看到Task Manager A给TaskManager B发送数据,Task Manager A做为Producer,Task Manager B做为Consumer。Producer端的Operator实例会产生数据,最后通过网络发送给Consumer端的Operator实例。Producer端Operator实例生产的数据首先缓存到Task Manager内部的Net Work Buffer。Net Work依赖Netty来做通信,Producer端的Netty内部有Channel Outbound Buffer,Consumer端的Netty内部有Channel Inbound Buffer。Netty最终还是要通过Socket发送网络请求,Socket这一层也会有Buffer,Producer端有Send Buffer,Consumer端有Receive Buffer。

故Flink网络传输时的整个反压过程为:首先Producer Operator从自己的上游或者外部数据源读取到数据后,对一条条的数据进行处理,处理完的数据首先输出到Producer Operator对应的Net Work Buffer中。Buffer写满或者超时后,就会触发将Net Work Buffer中的数据拷贝到Producer端Netty的Channel Outbound Buffer,之后又把数据拷贝到Socket的Send Buffer中,这里有一个从用户态拷贝到内核态的过程,最后通过Socket发送网络请求,把Send Buffer中的数据发送到Consumer端的Receive Buffer。数据到达Consumer端后,再依次从Socket的Receive Buffer拷贝到Netty的Channel Inbound Buffer,再拷贝到Consumer Operator的Net Work Buffer,最后Consumer Operator就可以读到数据进行处理了,这就是两个Task Manager之间的数据传输过程。

图2

1.5 netty水位机制作用分析

分析源码可知,Netty水位机制是一种静态的机制,Netty默认其水位线的高度为定值,这使得Flink系统在面临瞬时流量不稳定的场景(即系统的数据流量值在特别高与特别低的值之间不断跳动时)时,会出现下述两种问题:

  1. 水位值较下游可用缓存区数偏低:如图3 (左图)所示,图中以“圆圈”表示数据,以“方框”表示缓存区的大小,下同。假设当上游A点来临的数据量是9 (Flink中以buffer为数据单位,每个buffer大小为32 k,为便于表述,下文块描述),而此时下游B点的可用缓存区是10,N代表代表数据通道(其作用类似于水坝,水位值的大小决定了其单位时间通过的数据量大小),此处设水位值高度为4,则Flink传输本批次的数据需要3个单位时间(上游共9块数据,每个单位时间只能通过4块的数据,需要3个单位的时间来处理这批数据)。而若此时的水位值为9或者10的话,则只需要一个单位时间,Flink便可以处理本批次的数据。

  2. 水位值较下游可用缓存区数偏高:如图3 (右图),假设当上游A点来临的数据量是4,而此时下游B点的可用缓存区为2,水位值高度为4。由于数据量不于水位值高度,Flink会误以为可以在一单位时间内接受这批数据,如图中可以看出,只有2块的缓存区,直接接收了4块的数据量,会直接导致内存溢出(OOM)甚至引起系统阻塞。综上,由于不合理的静态水位线的设置,使得Flink传输数据时间延长,或者出现非正常的阻塞,进而影响整个Flink的数据传输情况。

图3
综上,由于不合理的静态水位线的设置,使得Flink传输数据时间延长,或者出现非正常的阻塞,进而影响整个Flink的数据传输情况。

2 反压优化算法

虽然可以在数据处理前对Netty所默认的两个buffer高度进行参数调整,但这种默认的定值始终是一种静态的机制。这种相对静态的机制使得Flink在面临远程传输问题时,容易出现上文所述的两种问题。本节将针对Flink反压传输所存在的缺点,提出一种基于动态水位值Flink调度优化算法,并给出例子进行说明。Flink-N算法的核心思想是:把Flink中Netty下游可用buffer数Bt实时写入Redis中,根据Redis中前后时刻buffer数(即Bt值)的大小变化,对水位值Wt进行动态调整,算法流程如图4所示,其具体步骤如下:

第一步,设置访问函数,并创建接口,使得Flink启动的同时运行访问函数。其中,访问函数的作用是,每间隔一段时间访问Netty下游缓存区可用buffer (图中B点位置)的数量,并将其记录到Redis中;

第二步,获得下游可用buffer数Bt;

第三步,取0.8倍的B0值的整数部分(向下取整)作为Netty的高水位值,即令W0H = ⌊0.8|B0|⌋;

第四步,将Bt值反馈到Redis中并记录;

第五步,根据Bt值调整水位值Wt,具体方法为:若Bt大于Bt与Bt−1的平均值,则Wt取Bt大于Bt与Bt−1的平均值;反之,当Bt ≤ Bt−1时,则令Wt = Bt。

第六步,重复第二步、第四步与第五步。

本文选择Redis是因为Flink处理时延是ms级别的,而Redis数据读取速度可达110,000次/s,写数据的速度可达81,000次/s,选择Redis相较于其他数据库而言,不会对Flink的时效性产生负增益。

图4
经过实验室测试,发现吞吐量有明显上升
在这里插入图片描述
cpu利用率也是

在这里插入图片描述
以及延时
在这里插入图片描述

3 重点! 但是 可但是 flink1.5以后的反压过程。

经过跟论文比较发现,实际上 flink1.5已经实现了等同于论文中设想的功能并实现。

在 Flink 层面实现反压机制,就是每一次 ResultSubPartition 向 InputChannel 发送消息的时候都会发送一个 backlog size 告诉下游准备发送多少消息,下游就会去计算有多少的 Buffer 去接收消息,算完之后如果有充足的 Buffer 就会返还给上游一个 Credit 告知他可以发送消息(图上两个 ResultSubPartition 和 InputChannel 之间是虚线是因为最终还是要通过 Netty 和 Socket 去通信)
图2

  • 1.5之前是tcp反压 链路太长 ,会涉及多个task 如果在同一个taskmanager会造成重复使用Socket 阻塞
  • 新的网路栈:TaskManager 传输数据时,不同的 TaskManager 上的两个 Subtask 间通 常根据 key 的数量有多个 Channel,这些 Channel 会复用同一个 TaskManager 级别的 TCP 链接,并且共享接收端 Subtask 级别的 Buffer Pool。
  • 在接收端,每个 Channel 在初始阶段会被分配固定数量的 Exclusive Buffer, 这些 Buffer 会被用于存储接受到的数据,交给 Operator 使用后再次被释放。 Channel 接收端空闲的 Buffer 数量称为 Credit,Credit 会被定时同步给发送端被后 者用于决定发送多少个 Buffer 的数据。
  • 在流量较大时,Channel 的 Exclusive Buffer 可能会被写满,此时 Flink 会向 Buffer Pool 申请剩余的 Floating Buffer。这些 Floating Buffer 属于备用 Buffer,哪 个 Channel 需要就去哪里。而在 Channel 发送端,一个 Subtask 所有的 Channel 会共享同一个 Buffer Pool,这边就没有区分 Exclusive Buffer 和 Floating Buffer。

看图可以知道 ,底层的通信肯定是socket,但实际用的组件是netty。是netty在互相通信,来实现反压信息的传递

在这里插入图片描述

4 flink反压问题的查找瓶颈办法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

一般情况使用Metrics都能够定位到问题,是cpu 内存,然后再定位算子,查看设计是否有缺陷,定位节点,加Metrics
我们在监控反压时会用到的 Metrics 主要和 Channel 接受端的 Buffer 使用率有关,最为有用的是以下几个:
Metrics: Metris描述
outPoolUsage发送端 Buffer 的使用率
inPoolUsage接收端 Buffer 的使用率
floatingBuffersUsage(1.9 以上)接收端 Floating Buffer 的使用率
exclusiveBuffersUsage (1.9 以上)接收端 Exclusive Buffer 的使用率

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1464755.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

短剧小程序系统,重塑视频观看体验的科技革命

随着科技的飞速发展,人们对于数字化内容的消费需求也在不断增长。在这个大背景下,短剧小程序作为一种新型的视频观看方式,正逐渐受到大众的青睐。本文将探讨短剧小程序的发展背景、特点以及市场前景,分析其在重塑视频观看体验方面…

哪个牌子的护眼台灯比较好用?纯干货护眼台灯品牌推荐

有些家长陪孩子写作业的时候发现他们总是在揉眼睛,学习时间久了还会用力眨眼睛。其实无论是白天还是晚上,孩子在家学习,看书,搭积木等,如果灯光不给力,一定要用台灯来给孩子补光,避免因为光线环…

Linux系列讲解 —— 【Vim编辑器】在Ubuntu18.04中安装新版Vim

平时用的电脑系统是Ubuntu18.04,使用apt安装VIM的默认版本是8.0。如果想要安装新版的Vim编辑器,只能下载Vim源码后进行编译安装。 目录 1. 下载Vim源码2. 编译3. 安装4. 遇到的问题4.1 打开vim后,文本开头有乱码现象。4.2 在Vim编辑器中&…

测试环境搭建整套大数据系统(三:搭建集群zookeeper,hdfs,mapreduce,yarn,hive)

一:搭建zk https://blog.csdn.net/weixin_43446246/article/details/123327143 二:搭建hadoop,yarn,mapreduce。 1. 安装hadoop。 sudo tar -zxvf hadoop-3.2.4.tar.gz -C /opt2. 修改java配置路径。 cd /opt/hadoop-3.2.4/etc…

【Spring】SpringBoot 热部署

目 录 一.添加热部署框架支持二.Settings 开启项目自动编译三.设置运行项目中的热部署( idea 2021.2版本)四.使用 debug 方式运行项目代码示例&#xff1a; 一.添加热部署框架支持 <dependency><groupId>org.springframework.boot</groupId><artifactId&…

适合中国人体质的低成本创业项目,抖音小店抓住小钱到大钱的之路

大家好&#xff0c;我是电商花花。 人啊&#xff0c;这一辈子想要赚钱&#xff0c;想要脱贫致富&#xff0c;小钱靠勤&#xff0c;中财靠运&#xff0c;大富靠命。 我还依稀记得母亲说的一句话&#xff0c;小钱不勤不聚&#xff0c;还谈何赚大钱&#xff0c;所有的大钱也都是…

Unity3d Mesh篇(二)— 创建Unity Logo平面

文章目录 前言一、Mesh组成二、使用步骤GetVertices方法GetNormal方法GetTriangles方法OnDrawGizmos方法 三、效果四、总结 前言 本篇将使用C#脚本实现在Unity中创建平面&#xff0c;并通过调整顶点、UV坐标和三角形来生成Unity Logo 的效果。 一、Mesh组成 顶点&#xff08;…

了解红帽认证,看这篇就够了!

红帽公司成立于1993年&#xff0c;是全球首家收入超10亿美元的开源公司&#xff0c;总部位于美国&#xff0c;分支机构遍布全球。 红帽公司作为全球领先的开源和Linux系统提供商&#xff0c;其产品已被业界广泛认可并使用&#xff0c;尤其是RHEL系统在业内拥有超高的Linux系统…

css3d制作正方体

使用css3d技术 &#xff0c;制作一个可以动态动画的正方体模型 效果图&#xff1a; 代码如下&#xff1a; <!DOCTYPE html> <html> <head><style>/* 设置高度宽度100%并且左右居中、上下居中 */html,body {width: 100%;height: 100%;display: flex…

C#串口 Modbus通讯工具类

一、安装Modbus包 二、创建modbushelper类 1、打开串口 public bool IfCOMOpend; //用于实例内的COM口的状态 public SerialPort OpenedCOM;//用于手动输入的COM转成SERIAL PORT /// <summary> /// 打开串口 /// </summary> /// <param name="COMname&quo…

2-22算法习题总结

贪心问题 凌乱的yyy / 线段覆盖 题目背景 快 noip 了&#xff0c;yyy 很紧张&#xff01; 题目描述 现在各大 oj 上有 n n n 个比赛&#xff0c;每个比赛的开始、结束的时间点是知道的。 yyy 认为&#xff0c;参加越多的比赛&#xff0c;noip 就能考的越好&#xff08;假…

Day04-课后练习以及参考答案(流程控制语句_循环结构)

文章目录 巩固题1、5个一行输出1-100之间的偶数2、趣味折纸3、实现输出如下任一个数字三角形4、计算这一天是这一年的第几天 拔高题1、计算这一天是这一年的第几天2、计算这一天是在打鱼还是晒网3、打印『X』对称图形4、打印空心菱形 巩固题 1、5个一行输出1-100之间的偶数 &…

【更新】ARCGIS之成片区开发方案报备坐标txt格式批量导出工具(定制开发版)

序言 之前开发的成片区开发方案报备格式是按湖北省的标准定制的&#xff0c;目前&#xff0c;自然资源部又有了新的格式要求&#xff0c;现在新增国标版的成片区开发方案报备格式导出。 之前版本软件详见&#xff1a;软件介绍 一、软件简介 本软件是基于arcgis二次开发的工具&…

YOLOv9 | 利用YOLOv9训练自己的数据集 -> 推理、验证(源码解读 + 手撕结构图)

一、本文介绍 本文给大家带来的是全新的SOTA模型YOLOv9的基础使用教程&#xff0c;需要注意的是YOLOv9发布时间为2024年2月21日&#xff0c;截至最近的日期也没有过去几天&#xff0c;从其实验结果上来看&#xff0c;其效果无论是精度和参数量都要大于过去的一些实时检测模型&…

C++力扣题目 392--判断子序列 115--不同的子序列 583--两个字符串的删除操作 72--编辑操作

392.判断子序列 力扣题目链接(opens new window) 给定字符串 s 和 t &#xff0c;判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字符串删除一些&#xff08;也可以不删除&#xff09;字符而不改变剩余字符相对位置形成的新字符串。&#xff08;例如&#xff0c;&quo…

中科大计网学习记录笔记(十三):UDP 套接字编程 | 传输层概述和传输层的服务

前言&#xff1a; 学习视频&#xff1a;中科大郑烇、杨坚全套《计算机网络&#xff08;自顶向下方法 第7版&#xff0c;James F.Kurose&#xff0c;Keith W.Ross&#xff09;》课程 该视频是B站非常著名的计网学习视频&#xff0c;但相信很多朋友和我一样在听完前面的部分发现信…

LangChain支持哔哩哔哩视频总结

是基于LangChain框架下的开发&#xff0c;所以最开始请先 pip install Langchain pip install bilibili-api-python 技术要点&#xff1a; 使用Langchain框架自带的Document loaders 修改BiliBiliLoader的源码&#xff0c;自带的并不支持当前b站的视频加载 源码文件修改&a…

Microsoft的PromptBench可以做啥?

目录 PromptBench简介 PromptBench的快速模型性能评估 PromptBench数据集介绍 PromptBench模型介绍 PromptBench模型加载遇到的问题 第一次在M1 Mac上加载模型 vicuna和llama系列模型 PromptBench各个模型加载情况总结 PromptBench的Prompt快速工程 chain of thought…

【Qt学习】QLineEdit 控件 属性与实例(登录界面,验证密码,正则表达式)

文章目录 1. 介绍2. 实例使用2.1 登录界面2.2 对比两次密码是否相同2.3 通过按钮显示当前输入的密码&#xff08;并对2.2进行优化&#xff09;2.4 结语 3. 正则表达式3.1 QRegExp3.2 验证输入内容 4. 资源代码 1. 介绍 关于 QLineEdit 的详细介绍&#xff0c;可以去查阅官方文…

【Spring】IoC容器 控制反转 与 DI依赖注入 三种实现方式 总结 第五期

目录 1 - 4 期三种配置方式总结1. XML方式配置总结2. XML注解方式配置总结3. 完全注解方式配置总结 整合Spring5-Test5搭建测试环境 1 - 4 期 介绍 IoC DI Xml实现 IoC DI 注解 Xml 实现 IoC DI 完全注解实现 三种配置方式总结 1. XML方式配置总结 所有内容写到xml格式…