1.deeplabv3+网络结构及原理

news2025/1/11 16:54:15

         这里的网络结构及原理可以看这篇博客,DeepLabV3+: 在DeepLabV3基础上引入了Decoder_matlab deeplabv3+resnet101-CSDN博客该博客翻译原论文解释得很清楚。

一、引言

       语义分割的目标是为图像中的每个像素分配语义标签。在这项研究中,考虑了两种类型的神经网络:使用了空间金字塔池化的模块、编解码器结构;前者可以通过在不同分辨率下汇集特性来获取丰富的上下文信息,后者能够获得清晰的物体边界。

       为了在不同尺度下获得上下文信息,DeepLabv3使用了几个并行的不同速率的空洞卷积(空洞空间金字塔池化,ASPP);而PSPNet则是在不同网格尺度上执行池化操作。尽管在最后一个feature map上编码了丰富的语义信息,但由于在网络backbone中使用了带有步长的池化或者卷积操作,与物体边界相关的细节信息却丢失了。这个问题,可以通过使用空洞卷积提取密集的feature maps来改善。

         DeepLabv3+,通过增加一个简单有效的解码器模块扩展了DeepLabv3,以恢复物体边界。在DeepLabv3的输出中,已经编码了丰富的语义信息,其使用空洞卷积来控制编码特征的密度,这取决于计算资源。此外,解码器模块可以恢复详细的物体边界。本质上deeplabv3+就是deeplabv3加上一个decoder.

        总体来讲,贡献如下:

  1. 在DeepLabv3基础上,加了一个解码器;
  2. 可以通过控制空洞卷积速率来任意改变编码器输出的feature map分辨率;
  3. 使用Xception作为backbone(也可使用ResNet101等),并在ASPP和解码器模块中使用了深度可分离卷积,从而产生了一个更快、更强的编解码网络;
  4. 该模型达到了新的SOTA;
  5. 开源了代码;

二、网络结构

       DeepLabV3+的网络结构如下图所示,主要为Encoder-Decoder结构。

        Encoder-decoder: 编解码结构已经被用于多种计算机视觉任务,如人体姿态估计、目标检测、语义分割。通常,编码器-解码器网络包含(1)一个编码器模块(Encoder),逐步减少特征映射并捕获更高的语义信息,(2)一个解码器模块(Decoder),逐步恢复空间信息。在此基础上,我们提出了使用DeepLabv3作为编码器模块,并添加一个简单而有效的解码器模块,以获得更清晰的分割。

1.Encoder

       在encoder部分,主要包括了backbone(DCNN)、ASPP两大部分。encoder中连接的第一个模块是DCNN, 他代表的是用于提取图片特征的主干网络,DCNN右边是一个ASPP网络,他用一个1*1的卷积、3个3*3的 空洞卷积和一个全局池化来对主干网络的输出进行处理。然后再将其结果都连接起来并用一个1*1的卷积 来缩减通道数。具体如下:

  • 其中backbone有两种网络结构:将layer4改为空洞卷积的Resnet系列、改进的Xception。从backbone出来的feature map分两部分:一部分是最后一层卷积输出的feature maps,另一部分是中间的低级特征的feature maps;backbone输出的第一部分送入ASPP模块,第二部分则送入Decoder模块。
  • ASPP模块接受backbone的第一部分输出作为输入,使用了四种不同膨胀率的空洞卷积块(包括卷积、BN、激活层)和一个全局平均池化块(包括池化、卷积、BN、激活层)得到一共五组feature maps,将其concat起来之后,经过一个1*1卷积块(包括卷积、BN、激活、dropout层),最后送入Decoder模块。

       可分离空洞卷积的优点:

  • 减小计算量,是普通卷积计算量的1/9;
  • 扩大感受野:神经网络加深,单个像素感受野扩大,但特征图尺寸缩小,空间分辨率降低,为此,空洞卷积出现了,一方面感受野大了可以检测分割大目标,另一方面分辨率高了可以精确定位目标。
  • 捕获多尺度上下文信息:两列之间填充 (r-1) 个0,这个 r 可自己设置,不同 r 可得到不同尺度信息。
2.Decoder

      在Decoder部分,接收来自backbone中间层的低级feature maps和来自ASPP模块的输出作为输入。

  • 首先,对低级feature maps使用1*1卷积进行通道降维,从256降到48(之所以需要降采样到48,是因为太多的通道会掩盖ASPP输出的feature maps的重要性,且实验验证48最佳);
  • 然后,对来自ASPP的feature maps进行插值上采样,得到与低级featuremaps尺寸相同的feature maps;
  • 接着,将通道降维的低级feature maps和线性插值上采样得到的feature maps使用concat拼接起来,并送入一组3*3卷积块进行处理;
  • 最后,再次进行线性插值上采样,得到与原图分辨率大小一样的预测图。
3.Xception

Xception网络结构如下:

        Xception网络是由inception结构加上depthwise separable convlution,再加上残差网络结构改进而来。Xception结构由36层卷积层组成网络的特征提取基础,分为Entry flow,Middle flow,Exit flow;被分成了14个模块,除了第一个和最后一个外,其余模块间均有线性残差连接。

        Xception结构演变:(轻量化网络结构——Xception_xception网络结构-CSDN博客

        Xception 并不是真正意义上的轻量化模型,是Google继Inception后提出的对Inception v3的另一种改进,主要是采用depthwise separable convolution来替代原来的Inception v3中的卷积操作,这种性能的提升是来自于更有效的使用模型参数而不是提高容量。

        既然是在Inception v3上进行改进的,那么Xception是如何一步一步的从Inception v3演变而来。Inception v3结构如下图1(这个网络结构是最基础的google提出的inceptuon网络结构的改进,大家可以查找资料进一步了解)

注:1x1卷积的作用: 1)降维:较少计算量 2)升维:小型网络,通道越多,效果会更好 3)1x1是有一个参数学习的卷积层,可以增加跨通道的相关性。

下图简化了上图的inception module(就只考虑1x1的那条支路,不包含Avg pool)如下:

       下图把上图的第一部分的3个1x1卷积核统一起来,变成1个1x1的卷积核,然后连接3个3x3的卷积,这3个卷积操作只将前面1x1卷积结果中的一部分作为自己的输入(只负责一部分通道)。

       下图An“extreme” version of Inception module,先用1x1卷积核对各通道之间(cross-channel)进行卷积,之后使用3x3的卷积对每个输出通道进行卷积操作,也就是3x3卷积的个数和1x1卷积的输出channel个数相同。

        在Xception中主要采用depthwise separable convolution,和原版的相比有两个不同之处:
(1)原版的Depthwise convolution,先是逐通道卷积,再1x1卷积;而Xception是反过来,先1x1卷积,再逐通道卷积。
(2)原版Depthwise convolution的两个卷积之间是不带激活函数的,而Xception再经过1x1卷积之后会带上一个Relu的非线性激活函数。

三、结论

        我们提出的模型“DeepLabv3+”采用了编码器-解码器结构,其中使用DeepLabv3对丰富的上下文信息进行编码,采用简单有效的解码器模块恢复对象边界。也可以根据可用的计算资源,应用空洞卷积以任意分辨率提取编码器特征。还对Xception模型和空洞可分离卷积进行了研究,使所提出的模型更快、更强。最后,我们的实验结果表明,所提出的模型在PASCAL VOC 2012和Cityscapes数据集达到SOTA。

        一句话总结DeepLabV3+:

        DeepLabv3作为Encoder提取特征,上采样后与backbone中间的低级特征以concat的方式融合,然后利用3*3卷积获得细化的特征,最后再进行上采样恢复到原始分辨率;在backbone部分,使用可分离卷积改进了Xception。

       本质上,DeepLabV3+就是DeepLabV3加上一个decoder。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1464663.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flink ML 的新特性解析与应用

摘要:本文整理自阿里巴巴算法专家赵伟波,在 Flink Forward Asia 2023 AI特征工程专场的分享。本篇内容主要分为以下四部分: Flink ML 概况在线学习的设计与应用在线推理的设计与应用特征工程算法与应用 一、Flink ML 概况 Flink ML 是 Apache…

Python自动化UI测试之Selenium基础实操

1. Selenium简介 Selenium 是一个用于 Web 应用程序测试的工具。最初是为网站自动化测试而开发的,可以直接运行在浏览器上,支持的浏览器包括 IE(7, 8, 9, 10, 11),Mozilla Firefox,Safari,Googl…

(done) 矩阵的对角化,以及是否可对角化的判断、还有对角化的本质。相似对角化计算过程

相似对角化 和 对角化 很大程度上是一回事 甚至判断两个矩阵的相似性,也跟对角化有很大关系 参考视频1:https://www.bilibili.com/video/BV1PA411T7b5/?spm_id_from333.788&vd_source7a1a0bc74158c6993c7355c5490fc600 参考视频2:http…

node 之 初步认识

思考:为什么JavaScript可以在浏览器中被执行 代执行的js代码——JavaScript解析引擎 不同的浏览器使用不同的JavaScript解析引擎 Chrome 浏览器 》 V8 Firefox浏览器 》OdinMonkey(奥丁猴) Safri浏览器 》JSCore IE浏览器 》Chakra(查克拉) e…

【算法分析与设计】

📝个人主页:五敷有你 🔥系列专栏:算法分析与设计 ⛺️稳中求进,晒太阳 题目 编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中数字位…

Vue 图片轮播第三方库 介绍

Vue图片轮播是一种在网页上以自动或手动方式展示图片的组件,常用于产品展示、网站banner等场景。有许多第三方库可以帮助Vue开发者轻松实现图片轮播功能。以下是一些流行的Vue图片轮播第三方库的介绍: 1. Vue-awesome-swiper - **简介**:V…

activeMq将mqtt发布订阅转成消息队列

1、activemq.xml置文件新增如下内容 2、mqttx测试发送: 主题(配置的模糊匹配,为了并发):VirtualTopic/device/sendData/12312 3、mqtt接收的结果 4、程序处理 package comimport cn.hutool.core.date.DateUtil; imp…

【Vue】本地使用 axios 调用第三方接口并处理跨域

前端处理跨域 一. 开发准备 开发工具:VScode框架:Vue2项目结构:vue脚手架生成的标准项目(以下仅显示主要部分) 本地已搭建好的端口:8080要请求的第三方接口:http://1.11.1.111:端口号/xxx-api…

免费文档比对方案 基于Draftable的文档比对功能实现 避免key30天到期问题

一、需求说明 目前在通用文档系统中存在【文档比对】的功能,这里最好是支持word->word、pdf->pdf、word->pdf等形式的通用型比较。 二、首先说明下pdf pdf文件比较特殊,它实际上文字的坐标映射,没有常规文本的段落、句子等含义。所以…

C语言翻译环境:预编译+编译+汇编+链接详解

目录 翻译环境和运行环境 翻译环境 预处理(预编译) 编译 词法分析 语法分析 语义分析 汇编 链接 运行环境 ⭐翻译环境和运行环境 在ANSI C的任何⼀种实现中,存在两个不同的环境。 第1种是翻译环境,在这个环境中源代码被…

使用Streamlit构建纯LLM Chatbot WebUI傻瓜教程

文章目录 使用Streamlit构建纯LLM Chatbot WebUI傻瓜教程开发环境hello Streatelit显示DataFrame数据显示地图WebUI左右布局设置st.sidebar左侧布局st.columns右侧布局 大语言模型LLM Chatbot WebUI设置Chatbot页面布局showdataframe()显示dataframeshowLineChart()显示折线图s…

解决IntelliJ IDEA 2023版本创建Spring项目时Java只能选择17或21的问题

问题描述: 当使用IntelliJ IDEA2023版本中Spring Initializr新建Spring项目时,即使JDK配置项为1.8,Java配置项仍然只能选17或21. 在JDK为1.8版本情况下,Java选择17或21,点击NEXT按钮,则会弹窗提示SDK不支持…

AI绘画与修图:重塑数字艺术的新纪元

文章目录 一、AI绘画与修图的原理二、AI绘画的应用三、AI修图的优势四、面临的挑战五、未来发展趋势《AI绘画与修图实战:PhotoshopFirefly从入门到精通 轻松玩转AI绘画与修图实战》亮点内容简介作者简介 随着人工智能技术的飞速发展,AI绘画与修图已经成为…

关于设备连接有人云的使用及modbus rtu协议,服务器端TCP调试设置

有人云调试 调试过程问题1. 关于modbus rtu协议,实质上有三种modbus基本原理modbus 格式2. 关于modbus crc16通信校验3. 关于在ubuntu阿里云服务器端,监听网络数据之调试mNetAssist之前的一个项目,再拿出来回顾下。 调试过程 先 要在有人云,用手机号注册一个服务账号,官网显…

“职”想有你!庭田科技2024招聘开始啦!

关于|庭田科技 庭田科技有限公司(简称:庭田科技)是一家专注于计算机辅助工程(CAE)软件和高科技仪器设备的系统集成商和方案咨询服务供应商(下设“上海庭田信息科技有限公司”与“西安庭田信息科技有限公司”)。致力于…

基于springboot+vue的智慧社区系统(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

css中选择器的优先级

CSS 的优先级是由选择器的特指度(Specificity)和重要性(Importance)决定的,以下是优先级规则: 特指度: ID 选择器 (#id): 每个ID选择器计为100。 类选择器 (.class)、属性选择器 ([attr]) 和伪…

手机上wmv怎么转换成视频mp4?3种视频转换方法分享

手机上wmv怎么转换成视频mp4?在手机上将WMV格式的视频转换成MP4格式,可以大大方便我们在不同平台和设备上播放和分享视频内容。WMV格式虽然在一些特定场合下使用广泛,但其兼容性和普及度不如MP4格式。MP4格式作为一种广泛支持的多媒体容器格式…

KafKa3.x基础

来源:B站 目录 定义消息队列传统消息队列的应用场景消息队列的两种模式 Kafka 基础架构Kafka 命令行操作主题命令行操作生产者命令行操作消费者命令行操作 Kafka 生产者生产者消息发送流程发送原理生产者重要参数列表 异步发送 API普通异步发送带回调函数的异步发送…

11.CSS3的媒介(media)查询

CSS3 的媒介(media)查询 经典真题 如何使用媒体查询实现视口宽度大于 320px 小于 640px 时 div 元素宽度变成 30% 媒体查询 媒体查询英文全称 Media Query,顾名思义就是会查询用户所使用的媒体或者媒介。 在现在,网页的浏览终端是越来越多了。用户可…