【小智好书分享• 第一期】深度学习计算机视觉

news2024/11/26 0:29:46

目录

  • 一、内容简介
  • 二、内页插图
  • 三、书籍目录
  • 四、粉丝福利
  • 中奖名单

在这里插入图片描述
在这里插入图片描述

🎉博客主页:小智_x0___0x_

🎉欢迎关注:👍点赞🙌收藏✍️留言

🎉系列专栏:好书分享

🎉代码仓库:小智的代码仓库


一、内容简介

计算机视觉有多先进?开一开特斯拉就知道了。深度学习技术已在人脸识别、交互式仿真和医学成像方面取得令人兴奋的突破,但最让人心潮澎湃的当属自动驾驶技术。如今,自动驾驶的汽车已经能在高速路上畅意驰骋并对各种复杂路况做出灵活反应了。

计算机如何“理解”它所“看到”的东西?本书试图将深度学习应用于计算机视觉以回答该问题。本书仅用高中代数知识阐明视觉直觉背后的概念。你将了解如何使用深度学习架构来构建视觉系统应用程序,以实现图像生成和人脸识别功能。

主要内容:

  • 图像分类和目标检测
  • 先进的深度学习架构
  • 迁移学习与生成对抗网络
  • DeepDream和神经风格迁移
  • 视觉嵌入和图像搜索

二、内页插图

在这里插入图片描述

三、书籍目录

第Ⅰ部分 深度学习基础
1 章 概述3
1.1 计算机视觉 4
1.1.1 视觉感知的定义 4
1.1.2 视觉系统 4
1.1.3 感知设备 6
1.1.4 解译设备 7
1.2 CV 应用 8
1.2.1 图像分类 9
1.2.2 目标检测与定位10
1.2.3 生成艺术(风格迁移) 11
1.2.4 图像生成11
1.2.5 人脸识别12
1.2.6 图片推荐系统13
1.3 计算机视觉管道概览 14
1.4 图像输入 15
1.4.1 图像的函数表达16
1.4.2 计算机读取图像17
1.4.3 彩色图像17
1.5 图像处理 19
1.6 特征提取 21
1.6.1 计算机视觉中特征的定义22
1.6.2 有用特征的定义23
1.6.3 手动与自动的特征提取25
1.7 分类器学习算法 27
1.8 本章小结 28
第2 章 深度学习和神经网络 29
2.1 理解感知机 30
2.1.1 感知机的定义31
2.1.2 感知机的学习机制34
2.1.3 单层感知机的局限性35
2.2 多层感知机 36
2.2.1 多层感知机架构37
2.2.2 关于隐藏层38
2.2.3 隐藏层的设计38
2.2.4 本节内容拓展40
2.3 激活函数 41
2.3.1 线性转移函数42
2.3.2 Heaviside 阶跃函数(二元分类器) 43
2.3.3 Sigmoid/logistic函数43
2.3.4 Softmax 函数46
2.3.5 双_3恄黖衉J曲正切函数
2.5.1 误差函数的定义55
2.5.2 误差函数的意义55
2.5.3 误差为正的必要性55
2.5.4 均方误差损失函数56
2.5.5 交叉熵损失函数57
2.5.6 关于误差和权重的补充说明58
2.6 优化算法 59
2.6.1 优化的定义59
2.6.2 批梯度下降62
2.6.3 随机梯度下降67
2.6.4 小批梯度下降68
2.6.5 梯度下降总结68
2.7 反向传播 69
2.7.1 反向传播的定义70
2.7.2 反向传播总结72
2.8 本章总结 73
第3 章 卷积神经网络75
3.1 使用MLP 进行图像分类 76
3.1.1 输入层76
3.1.2 隐藏层78
3.1.3 输出层78
3.1.4 组合78
3.1.5 MLP 处理图像的缺点80
3.2 CNN 架构 82
3.2.1 概述83
3.2.2 特征提取详解84
3.2.3 分类详解85
3.3 CNN 的基本组件 85
3.3.1 卷积层86
3.3.2 池化层或下采样92
3.3.3 全连接层96
3.4 使用CNN 进行图像分类 98
3.4.1 构建模型体系架构98
3.4.2 参数(权重)的数量100
3.5 添加dropout 层以避免过拟合 101
3.5.1 过拟合定义101
3.5.2 dropout 层定义102
3.5.3 dropout 层的重要意义102
3.5.4 dropout 层在CNN架构中的位置103
3.6 彩色(3D)图像的卷积 104
3.6.1 彩色图像的卷积105
3.6.2 计算复杂度的变化107
3.7 练习项目:彩色图像分类 109
3.8 本章总结 118
第4 章 构造DL 项目以及超参数调优119
4.1 定义性能指标 120
4.1.1 选择评价模型的最佳指标120
4.1.2 混淆矩阵120
4.1.3 精确度和召回率121
4.1.4 F1 得分122
4.2 设计基准模型 122
4.3 为训练准备数据 124
4.3.1 划分数据集124
4.3.2 数据处理125
4.4 评估模型并解释其性能 127
4.4.1 诊断过拟合和欠拟合127
4.4.2 绘制学习曲线129
4.4.3 练习项目:构建、训练和评估网络129
4.5 网络改进和超参数调优 132
4.5.1 收集更多数据与超参数调优132
4.5.2 参数与超参数133
4.5.3 神经网络超参数133
4.5.4 网络架构134
4.6 学习和优化 135
4.6.1 学习率及其衰减策略135
4.6.2 找到最佳学习率的系统性方法138
4.6.3 学习率衰减和自适应学习138
4.6.4 小批大小139
4.7 优化算法 141
4.7.1 动量梯度下降142
4.7.2 Adam 142
4.7.3 训练轮数和早停标准143
4.7.4 Early stopping144
4.8 正则化技术 144
4.8.1 L2 正则化145
4.8.2 Dropout 层146
4.8.3 数据增强146
4.9 批归一化 147
4.9.1 协变量偏移问题148
4.9.2 神经网络中的协变量偏移148
4.9.3 批归一化的工作原理149
4.9.4 批归一化在keras 中的实现150
4.9.5 批归一化回顾151
4.10 练习项目:实现高准确度的图像分类 151
4.11 本章小结 157
第Ⅱ部分 图像分类和检测
第5 章 先进的CNN 架构 161
5.1 CNN 设计模式 162
5.2 LeNet-5 164
5.2.1 LeNet 架构164
5.2.2 LeNet-5 在Keras 中的实现165
5.2.3 设置学习超参数167
5.2.4 LeNet 在MNIST 数据集上的性能168
5.3 AlexNet 168
5.3.1 AlexNet 网络架构169
5.3.2 AlexNet 的新特性169
5.3.3 Keras 中的AlexNet实现171
5.3.4 设置学习超参数174
5.3.5 AlexNet 的性能174
5.4 VGGNet 175
5.4.1 VGGNet 新特性175
5.4.2 VGGNet 配置176
5.4.3 学习超参数179
5.4.4 VGGNet 性能179
5.5 Inception 和GoogLeNet 179
5.5.1 Inception 新特性180
5.5.2 Inception 模块:Naive 版181
5.5.3 Inception 模块与维数约减182
5.5.4 Inception 体系架构184
5.5.5 GoogLeNet 的Keras实现185
5.5.6 学习参数190
5.5.7 Inception 在CIFAR数据集上的性能190
5.6 ResNet 191
5.6.1 ResNet 新特性191
5.6.2 残差块193
5.6.3 keras 中的ResNet实现195
5.6.4 学习超参数197
5.6.5 ResNet 在CIFAR数据集上的性能197
5.7 本章小结 198
第6 章 迁移学习199
6.1 迁移学习的必要性 200
6.2 迁移学习的定义 201
6.3 迁移学习的工作原理 207
6.3.1 神经网络如何学习特征208
6.3.2 网络后期提取的特征的可迁移性210
6.4 迁移学习方法 210
6.4.1 使用预训练网络作为分类器210
6.4.2 使用预训练网络作为特征提取器212
6.4.3 微调213
6.5 选择合适的迁移学习方法 215
6.5.1 场景1:目标数据集较小且与源数据集相似215
6.5.2 场景2:目标数据集较大且与源数据集相似216
6.5.3 场景3:目标数据集较小且与源数据集不同216
6.5.4 场景4:目标数据集较大且与源数据集不同216
6.5.5 迁移学习场景总结216
6.6 开源数据集 217
6.6.1 MNIST 217
6.6.2 Fashion-MNIST 218
6.6.3 CIFAR 218
6.6.4 ImageNet 219
6.6.5 MS COCO 221
6.6.6 Google OpenImages222
6.6.7 Kaggle222
6.7 项目1:预训练网络作为特征提取器 222
6.8 项目2:微调 228
6.9 本章小结 235
第7 章 使用R-CNN、SSD 和YOLO进行目标检测 237
7.1 目标检测的通用框架 238
7.1.1 候选区域239
7.1.2 网络预测240
7.1.3 非极大值抑制(NMS) 241
7.1.4 目标检测器的评价指标241
7.2 R-CNN 244
7.2.1 R-CNN 244
7.2.2 Fast R-CNN 248
7.2.3 Faster R-CNN 250
7.2.4 R-CNN 家族总结256
7.3 SSD(Single-shotdetector) 259
7.3.1 SSD 架构总览259
7.3.2 基础网络261
7.3.3 多尺度特征层263
7.3.4 NMS266
7.4 YOLO(you only lookonce)(320) 267
7.4.1 YOLO v3 的工作机制268
7.4.2 YOLOv3 架构270
7.5 项目:在自动驾驶中应用SSD 网络 272
7.5.1 步骤1:构建模型274
7.5.2 步骤2:模型配置275
7.5.3 步骤3:创建模型276
7.5.4 步骤3:加载数据276
7.5.5 步骤5:训练模型278
7.5.6 步骤6:可视化损失279
7.5.7 步骤7:预测280
7.6 本章小结 281
第Ⅲ部分 生成模型与视觉嵌入
第8 章 生成对抗网络285
8.1 GAN 架构 286
8.1.1 Deep convolutionalGANs(DCGANs) 288
8.1.2 鉴别器模型288
8.1.3 生成器模型290
8.1.4 训练GAN 293
8.1.5 GAN 极小极大值函数296
8.2 评估GAN 模型 297
8.2.1 Inception score298
8.2.2 Fréchet inception distance(FID)298
8.2.3 评估方案选择299
8.3 GAN 的主流应用 299
8.3.1 文本生成图像(Text-tophotosynthesis)299
8.3.2 图像翻译(Pix2PixGAN) 300
8.3.3 图像超分辨率GAN(SRGAN)301
8.3.4 准备好动手了吗302
8.4 练习项目:构建自己的GAN 302
8.5 本章小结 311
第9 章 DeepDream 和神经风格迁移 313
9.1 打开CNN 的黑盒 314
9.1.1 CNN 工作原理回顾314
9.1.2 CNN 特征可视化315
9.1.3 特征可视化工具的实现318
9.2 DeepDream 321
9.2.1 DeepDream 算法的工作原理322
9.2.2 DeepDream 的Keras实现324
9.3 神经风格迁移 327
9.3.1 内容损失329
9.3.2 风格损失(styleloss) 330
9.3.3 总变分损失(total varianceloss)332
9.3.4 网络训练332
9.4 本章小结 333
第10 章 视觉嵌入335
10.1 视觉嵌入的应用 336
10.1.1 人脸识别337
10.1.2 图片推荐系统337
10.1.3 目标重识别系统339
10.2 学习嵌入 340
10.3 损失函数 341
10.3.1 问题建立和形式化342
10.3.2 交差熵损失342
10.3.3 对比损失343
10.3.4 三元组损失344
10.3.5 损失的简单实现和运行分析345
10.4 挖掘信息数据 347
10.4.1 数据加载器347
10.4.2 信息型数据挖掘:寻找有用的三元组349
10.4.3 Batch All(BA)350
10.4.4 Batch Hard(BH) 351
10.4.5 batch weighted(BW)353
10.4.6 Batch Sample(BS)354
10.5 练习项目:训练嵌入网络 355
10.5.1 时尚圈:查找相似的衣服356
10.5.2 车辆重识别356
10.5.3 实现357
10.5.4 测试训练的模型358
10.6 突破准确度的限制 362
10.7 本章小结 363
参考文献 365
附录A 369
A.1 下载代码库 369
A.2 安装Anaconda 369
A.3 设置DL 环境 370
A.3.1 手动设置你的开发环境370
A.3.2 使用本书的repo 中的conda 环境371
A.3.3 保存和加载环境372
A.4 设置AWS EC2 环境 372
A.4.1 创建AWS 账号372
A.4.2 远程连接到此实例373
A.4.3 运行JupyterNotebook374

四、粉丝福利

  • 参与评论送书:随机抽取最多2位幸运读者,送一本《深度学习计算机视觉》
  • 统计截止时间:2024/01/19 19:00:00
  • 请中奖的读者统计截止时间过后私信小智收货地址,过期奖励作废!
  • 没中奖的小伙伴,如果对此书感兴趣可以点击下方的链接自行购买《深度学习计算机视觉》
  • 关注公众号“小智码农乐园”回复“抽奖116”参与活动:随机抽取1位幸运读者,送一本《深度学习计算机视觉》
    ​统计截止时间:2024/01/19 19:00:00

中奖名单

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1463249.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

springboot210基于Springboot开发的精简博客系统的设计与实现

基于Springboot开发的精简博客系统的设计与实现 摘要 当下,正处于信息化的时代,许多行业顺应时代的变化,结合使用计算机技术向数字化、信息化建设迈进。以前企业对于博客信息的管理和控制,采用人工登记的方式保存相关数据&#…

Video generation models as world simulators-视频生成模型作为世界模拟器

原文地址:Video generation models as world simulators 我们探索在视频数据上进行大规模生成模型的训练。具体来说,我们联合训练文本条件扩散模型,同时处理不同持续时间、分辨率和长宽比的视频和图像。我们利用一个在视频和图像潜在编码的时…

Salesforce顾问如何拿到更高的薪水?

顾问的角色已经在Salesforce生态系统存在了一段时间,随着Salesforce针对职业发展的Trailhead培训模块的发布,该角色的热度又达到了新的浪潮。越来越多人走上了Salesforce顾问这条职业道路。 当然其薪资水平也非常可观,据调查,美国…

【Linux系统化学习】深入理解匿名管道(pipe)和命名管道(fifo)

目录 进程间通信 进程间通信目的 进程间通信的方式 管道 System V IPC(本地通信) POSIX IPC(网络通信) 管道 什么是管道 匿名管道 匿名管道的创建 匿名管道的使用 匿名管道的四种情况 匿名管道的五种特性 命名管道 …

2024第16届全国大学生广告艺术大赛介绍

全国大学生广告艺术大赛介绍 全国大学生广告艺术大赛(简称大广赛)自2005年第1届至今,遵循“促进教改、启迪智慧、强化能力、提高素质、立德树人”的竞赛宗旨,成功举办了14届共15次赛事,全国共有1857所高校参与其中&am…

#LLM入门|Prompt#1.7_文本拓展_Expanding

输入简短文本,生成更加丰富的长文。 “温度”(temperature):控制文本生成的多样性。 一、定制客户邮件 根据客户的评价和其中的情感倾向,使用大语言模型针对性地生成回复邮件。将大大提升客户满意度。 # 我们可以在…

Rust: reqwest库示例

一、单一文件异步 1、cargo.toml [dependencies] tokio { version "1.0.0", features ["full", "tracing"] } tokio-util { version "0.7.0", features ["full"] } tokio-stream { version "0.1" }tr…

《数字化运维路线图》第四部分-数字化运维转型场景 震撼发布!

《数字化运维路线图》系列的压轴之作——《数字化运维转型场景》终于迎来正式发布。这部分内容与《数字化运维组织升级》、《数字化运维转型的标准流程》和《数字化运维转型平台》共同构成了一套完整的数字化运维转型作战蓝图,全方位、多角度地概括了企业如何有效地…

10MARL深度强化学习 Value Decomposition in Common-Reward Games

文章目录 前言1、价值分解的研究现状2、Individual-Global-Max Property3、Linear and Monotonic Value Decomposition3.1线性值分解3.2 单调值分解 前言 中心化价值函数能够缓解一些多智能体强化学习当中的问题,如非平稳性、局部可观测、信用分配与均衡选择等问题…

前端架构: 脚手架之Chalk和Chalk-CLI使用教程

Chalk Chalk 是粉笔的意思, 它想表达的是,给我们的命令行中的文本添加颜色类似彩色粉笔的功能 在官方文档当中,它的 Highlights 核心特性 Expressive API Highly performant No dependencies Ability to nest styles 256/Truecolor color support Auto-…

Android中通过属性动画实现文字轮播效果

前些天发现了一个蛮有意思的人工智能学习网站,8个字形容一下"通俗易懂,风趣幽默",感觉非常有意思,忍不住分享一下给大家。 👉点击跳转到教程 一、创建一个自定义ProvinceView类,具体代码如下 /*** Author: ly* Date: 2024/2/22* D…

【服务器】服务器推荐

一、引言 在数字世界的浪潮中,服务器作为数据存储和处理的基石,其重要性不言而喻。而在这个繁星点点的市场中,雨云以其独特的优势和超高的性价比,逐渐成为众多企业和个人的首选。今天,就让我带你走进雨云的世界&#…

2024 Sora来了!“手机Agent智能体”也来了!

近日,Open AI发布了能够根据文本生成超现实视频的工具Sora,多款震撼视频引爆科技圈刷屏,热度持续发酵占据AI领域话题中心,被认为是AGI实现过程里的重大里程碑事件。新一轮的人工智能浪潮给人类未来的生产和生活方式带来巨大而深远…

盘点被吹爆的桌面便签小工具

桌面便签小工具有很多,任何一款桌面便签小工具都有它的优缺点,而那些被吹爆了好用的桌面便签小工具往往是优点远多于缺点,从而深受用户的喜爱,今天我们来给大家盘点一款被很多行业吹爆了的桌面便签小工具:好用便签。 …

[论文精读]Do Transformers Really Perform Bad for Graph Representation?

论文网址:[2106.05234] Do Transformers Really Perform Bad for Graph Representation? (arxiv.org) 论文代码:https://github.com/Microsoft/Graphormer 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼…

EAP-TLS实验之Ubuntu20.04环境搭建配置(FreeRADIUS3.0)(二)

上篇文章简要介绍了freeradius的搭建及配置,在最后数据库连接阶段还没进行测试验证,今天继续。 修改相关文件 1 radiusd.conf 打开762行注释($INCLUDE mods-enabled/sql); 2 sites-available/default …

智慧工地uniapp项目管理系统源码

目录 智慧工地的核心 智慧工地特点 智慧工地的优势 智慧工地应用场景 智慧工地平台---项目版(端) 智慧工地数字栾生平台 三位一体全数据贯通 智慧工地是指应用物联网、大数据、云计算、人工智能等新兴技术,对建筑工地进行数字化、信息…

http://127.0.0.1:9222/json打不开Chrome环境变量问题

解决方案: 系统环境变量Path设置错误, 1、先看下端口是否占用:netstat -ano|findstr “9222” , 如下127.0.0.1:9222端口显示LISTENING是正常的 如果是SYN_SENT可能不太正常,这个时候, taskkill /PID 端…

Ubuntu使用Docker部署Redis并实现远程访问本地数据库

文章目录 前言1. 安装Docker步骤2. 使用docker拉取redis镜像3. 启动redis容器4. 本地连接测试4.1 安装redis图形化界面工具4.2 使用RDM连接测试 5. 公网远程访问本地redis5.1 内网穿透工具安装5.2 创建远程连接公网地址5.3 使用固定TCP地址远程访问 前言 本文主要介绍如何在Ub…

uniapp微信小程序-项目实战修改密码

图标是使用uview里面的图标&#xff0c;icfont也可以 以下是所有代码 <template><view><!-- 密码三个 --><view class"password" v-for"(item,index) in userList"><view class"contentuser"><view class&qu…