[ Python+OpenCV+Mediapipe ] 实现对象识别

news2024/11/17 12:56:05

一、写在前面

       本文所用例子为个人学习的小结,如有不足之处请各位多多海涵,欢迎小伙伴一起学习进步,如果想法可在评论区指出,我会尽快回复您,不胜感激!

        所公布代码或截图均为运行成功后展示。

二、本文内容

       使用OpenCV和Mediapipe提供的库,通过摄像头捕捉画面,调用mpp的模型识别库,识别对象的是什么,并标注可信度。

        如下图识别泰迪熊等。

 官方给出的模型库中还有很多目标,我整理在下方表格里:

https://storage.googleapis.com/mediapipe-tasks/object_detector/labelmap.txt

personelephant大象wine glass酒杯dining table餐桌
bicycle自行车bearcup杯子toilet坐便器
car汽车zebra斑马forktv电视
motorcycle摩托车giraffe长颈鹿knifelaptop笔记本电脑
airplane飞机backpack背包spoon勺子mouse老鼠
bus公共汽车umbrella雨伞bowlremote遥远的
train火车handbag手提包banana香蕉keyboard键盘
truck卡车tie领带apple苹果cell phone手机
boatsuitcase手提箱sandwich三明治microwave微波炉
traffic light交通灯frisbee飞盘orange橙色oven烤箱
fire hydrant消防栓skis滑雪板broccoli西兰花toaster烤面包机
stop sign停车标志snowboard滑雪板carrot胡萝卜sink下沉
parking meter停车收费表sports ball运动球hot dog热狗refrigerator冰箱
bench长凳kite风筝pizza披萨book
birdbaseball bat棒球棍donut甜甜圈clock时钟
catbaseball glove棒球手套cake糕饼vase花瓶
dogskateboard滑板chair椅子scissors剪刀
horsesurfboard冲浪板couch沙发teddy bear泰迪熊
sheeptennis racket网球拍potted plant盆栽植物hair drier吹风机
cow母牛bottle瓶子bedtoothbrush牙刷

三、开发环境

1.Python 3.9

2.OpenCV

3.Mediapipe:https://developers.google.com/mediapipe/solutions/vision/hand_landmarker

4.comtypes

5.numpy

IDE:

1.Pycharm

四、代码实现

4.1 引入所需包

        引入后报红,则说明缺少对应module,可以通过pip install xx解决,如果pip install失败,可以尝试更换镜像源

 #更换为豆瓣的镜像源

 pip config set global.index-url https://pypi.douban.com/simple

import mediapipe as mp
from mediapipe.tasks import python
import cv2
import numpy as np
from mediapipe.tasks.python import vision

4.2 定义图像框标注的方法:

        初始化mediapipe的一些属性,并获取系统音量控制器及音量范围。

'''
用于在图像上绘制目标检测结果的边界框和标签:
函数接受两个参数:image 表示要绘制目标检测结果的图像,detection_result 是包含检测结果的对象。
对于每个检测到的对象,函数会执行以下操作:
绘制边界框:根据检测到的对象的边界框信息,使用 cv2.rectangle 在图像上绘制一个矩形框,框的颜色为 TEXT_COLOR,线宽为 3。
绘制标签和置信度:从检测结果中获取对象的类别和置信度信息,然后将类别名称和置信度值格式化为文本,将其放置在边界框的左上角,以便在图像上显示对象的标签和置信度。
最后,函数返回经过绘制标框和标识后的图像。
'''
# 图像解析标框及标识
def visualize(
        image,
        detection_result
) -> np.ndarray:
    for detection in detection_result.detections:
        # Draw bounding_box
        bbox = detection.bounding_box
        start_point = bbox.origin_x, bbox.origin_y
        end_point = bbox.origin_x + bbox.width, bbox.origin_y + bbox.height
        cv2.rectangle(image, start_point, end_point, TEXT_COLOR, 3)

        # Draw label and score
        category = detection.categories[0]
        category_name = category.category_name
        probability = round(category.score, 2)
        result_text = category_name + ' (' + str(probability) + ')'
        text_location = (MARGIN + bbox.origin_x,
                         MARGIN + ROW_SIZE + bbox.origin_y)
        cv2.putText(image, result_text, text_location, cv2.FONT_HERSHEY_PLAIN,
                    FONT_SIZE, TEXT_COLOR, FONT_THICKNESS)

    return image

4.3 定义并调用模型库

        将下载好的模型放在项目同级目录下

'''
调用识别对象模型
模型下载地址:https://storage.googleapis.com/mediapipe-models/object_detector/efficientdet_lite0/float32/latest/efficientdet_lite0.tflite
'''
base_options = python.BaseOptions(model_asset_path='efficientdet_lite0.tflite')
options = vision.ObjectDetectorOptions(base_options=base_options,
                                       score_threshold=0.5)
with vision.ObjectDetector.create_from_options(options) as detector:

4.4 转换图像并识别

        将摄像头捕捉到的每一帧图片转换为mediapipe可用的格式,并在检测后返回检测结果,调用图像标识方法绘制对象识别框及名称标注,显示于界面上

        #创建mediapipe格式的图片
        mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame)
        #检测该图片
        detection_result = detector.detect(mp_image)
        #复制图片数据到np数组中,以便进行数据分析
        image_copy = np.copy(mp_image.numpy_view())
        #调用图像标识方法
        annotated_image = visualize(image_copy, detection_result)
        #加载模型到界面上
        cv2.imshow("Object detection", annotated_image)  # CV2窗体

五、看一看实际效果吧

        还可以识别更多的目标,请自己尝试一下吧        

5.1 识别人脸

        (没错!我是彦祖!)

5.2 识别手机

        1+8Pro 512G 金色传说品质~

5.3 泰迪熊

        鬼知道官方为什么要识别泰迪熊?

5.4 自行车

        是时候锻炼身体了!

5.5 修狗

        乖巧金毛,我爱修狗

5.6 修猫

        小猫小猫,天下第一好!

六、完整代码

import mediapipe as mp
from mediapipe.tasks import python
import cv2
import numpy as np
from mediapipe.tasks.python import vision

MARGIN = 10  # pixels
ROW_SIZE = 10  # pixels
FONT_SIZE = 1
FONT_THICKNESS = 1
TEXT_COLOR = (0, 255, 0)
# 视频分辨率
resize_w = 1280
resize_h = 960

'''
用于在图像上绘制目标检测结果的边界框和标签:
函数接受两个参数:image 表示要绘制目标检测结果的图像,detection_result 是包含检测结果的对象。
对于每个检测到的对象,函数会执行以下操作:
绘制边界框:根据检测到的对象的边界框信息,使用 cv2.rectangle 在图像上绘制一个矩形框,框的颜色为 TEXT_COLOR,线宽为 3。
绘制标签和置信度:从检测结果中获取对象的类别和置信度信息,然后将类别名称和置信度值格式化为文本,将其放置在边界框的左上角,以便在图像上显示对象的标签和置信度。
最后,函数返回经过绘制标框和标识后的图像。
'''
# 图像解析标框及标识
def visualize(
        image,
        detection_result
) -> np.ndarray:
    for detection in detection_result.detections:
        # Draw bounding_box
        bbox = detection.bounding_box
        start_point = bbox.origin_x, bbox.origin_y
        end_point = bbox.origin_x + bbox.width, bbox.origin_y + bbox.height
        cv2.rectangle(image, start_point, end_point, TEXT_COLOR, 3)

        # Draw label and score
        category = detection.categories[0]
        category_name = category.category_name
        probability = round(category.score, 2)
        result_text = category_name + ' (' + str(probability) + ')'
        text_location = (MARGIN + bbox.origin_x,
                         MARGIN + ROW_SIZE + bbox.origin_y)
        cv2.putText(image, result_text, text_location, cv2.FONT_HERSHEY_PLAIN,
                    FONT_SIZE, TEXT_COLOR, FONT_THICKNESS)

    return image


'''
调用识别对象模型
模型下载地址:https://storage.googleapis.com/mediapipe-models/object_detector/efficientdet_lite0/float32/latest/efficientdet_lite0.tflite
'''
base_options = python.BaseOptions(model_asset_path='efficientdet_lite0.tflite')
options = vision.ObjectDetectorOptions(base_options=base_options,
                                       score_threshold=0.5)
with vision.ObjectDetector.create_from_options(options) as detector:
    # 初始化摄像头
    cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)

    while cap.isOpened():
        #获取每一帧画面
        success, frame = cap.read()
        # 如果读取到空帧,继续循环
        if not success:
            print("空帧.")
            continue

        # 重置该图片的大小
        frame = cv2.resize(frame, (resize_w, resize_h))
        #创建mediapipe格式的图片
        mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame)
        #检测该图片
        detection_result = detector.detect(mp_image)
        #复制图片数据到np数组中,以便进行数据分析
        image_copy = np.copy(mp_image.numpy_view())
        #调用图像标识方法
        annotated_image = visualize(image_copy, detection_result)
        #加载模型到界面上
        cv2.imshow("Object detection", annotated_image)  # CV2窗体
        # 按下'q'键退出循环
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cap.release()

七、小结

       Mediapipe还有很多库可以探索,目前我也只是在使用,之前通过opencv训练了人脸模型,后续还需要再深入研究一下模型训练之类的。想学的有很多,还要加油啊!

八、感谢

        感谢各位大佬的莅临,学习之路漫漫,吾将上下而求索。有任何想法请在评论区留言哦!

        再次感谢!

        

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1462676.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计网 - 域名解析的工作流程

文章目录 Pre引言1. DNS是什么2. 域名结构3. 域名解析的工作流程4. 常见的DNS记录类型5. DNS安全6. 未来的发展趋势 Pre 计网 - DNS 域名解析系统 引言 在我们日常使用互联网时,经常会输入各种域名来访问网站、发送电子邮件或连接其他网络服务。然而,我…

构建React TodoList应用:管理你的任务清单

构建React TodoList应用:管理你的任务清单 在日常生活和工作中,任务管理是一项至关重要的任务。为了更好地组织和管理我们的工作和生活,我们需要一个高效而简单的任务管理工具。本文将介绍如何使用React框架构建一个功能丰富的TodoList应用&…

C++动态分配内存知识点!

个人主页:PingdiGuo_guo 收录专栏:C干货专栏 大家好呀,又是分享干货的时间,今天我们来学习一下动态分配内存。 文章目录 1.动态分配内存的思想 2.动态分配内存的概念 2.1内存分配函数 2.2动态内存的申请和释放 2.3内存碎片问…

新手学习Cesium的几点建议

Cesium是当前非常火热的三维数字地球开发框架,很多公司基于Cesium做项目以及形成了自己的产品,关于Cesium的学习,有诸多网站、书籍、学习资料甚至培训教材,这里不再详细推荐,从学习Cesium的角度,资料和教程…

web开发中的长度单位详解

1、长度单位包括哪些? 长度单位:例如,厘米、毫米、英寸。还有像素(px),元素的字体高度(em)、字母x的高度(ex)、百分比(%)等这些单位&…

[ 2024春节 Flink打卡 ] -- Paimon

2024,游子未归乡。工作需要,flink coding。觉知此事要躬行,未休,特记 Flink 社区希望能够将 Flink 的 Streaming 实时计算能力和 Lakehouse 新架构优势进一步结合,推出新一代的 Streaming Lakehouse 技术,…

MySQL加锁策略详解

我们主要从三个方面来讨论这个问题: 啥时候加?如何加?什么时候该加什么时候不该加? 1、啥时候加 1.1 显式锁 MySQL 的加锁可以分为显式加锁和隐式加锁,显式加锁我们比较好识别的,因为他往往直接体现在 S…

25-k8s集群中-RBAC用户角色资源权限

一、RBAC概述 1,k8s集群的交互逻辑(简单了解) 我们通过k8s各组件架构,指导各个组件之间是使用https进行数据加密及交互的,那么同理,我们作为“使用”k8s的各种资源,也是通过https进行数据加密的…

4 编写达梦插件包

1、初始化达梦数据库 具体脚本可以参考: https://github.com/nacos-group/nacos-plugin/blob/develop/nacos-datasource-plugin-ext/nacos-dm-datasource-plugin-ext/src/main/resources/schema/nacos-dm.sql

国际阿里云,想要使用怎么解决支付问题

在国内我们很多时候都需要用到国际阿里云,在国际阿里云需要使用就需要支付,自己办理visa卡比较麻烦,那么我们可以使用虚拟卡,虚拟卡办理快速简单 真实测评使用Fomepay的5347支持国际阿里云的支付,秒下卡,不…

Talk|北京大学杨灵:扩散模型的算法创新与领域应用

本期为TechBeat人工智能社区第572期线上Talk。 北京时间2月21日(周三)20:00,北京大学博士生—杨灵的Talk已准时在TechBeat人工智能社区开播! 他与大家分享的主题是: “扩散模型的算法创新与领域应用”,系统地介绍了他的团队基于扩散模型的算法…

vue3在router跳转路由时,params失效问题

vue-router重要提示。 解决方案: 1. 使用query传参 但是变量会直接暴露在url中 2.用store或localStorage这种办法暂存一下。

书生·浦语大模型实战营第二节课作业

使用 InternLM-Chat-7B 模型生成 300 字的小故事(基础作业1)。 熟悉 hugging face 下载功能,使用 huggingface_hub python 包,下载 InternLM-20B 的 config.json 文件到本地(基础作业2)。 下载过程 进阶…

Vue+SpringBoot打造校园二手交易系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 二手商品档案管理模块2.3 商品预约管理模块2.4 商品预定管理模块2.5 商品留言板管理模块2.6 商品资讯管理模块 三、实体类设计3.1 用户表3.2 二手商品表3.3 商品预约表3.4 商品预定表3.5 留言表3.6 资讯…

蓝桥杯备赛系列——倒计时50天!

蓝桥杯备赛系列 倒计时50天! 前缀和和差分 知识点 **前缀和数组:**假设原数组用a[i]表示,前缀和数组用sum[i]表示,那么sum[i]表示的是原数组前i项之和,注意一般用前缀和数组时,原数组a[i]的有效下标是从…

PotPlayer+Alist挂载并播放网盘视频

文章目录 说明技术WebDAVPotPlayer 操作步骤一:Alist开启WebDAV代理二:PotPlayer连接Alist 说明 Alist网页端播放视频受限,主要是文件大于20MB,由于官方限制,无法播放需要使用user-agent修改插件,设置百度…

ES项目应用

配置: ES存储了2-3亿条,几百GB ES集群有5 个节点 2主2副 ES返回数据量窗口大小设置 index.max_result_window 深度翻页 1.from size 方式 2.scroll相当于维护了一份当前索引段的快照信息,这个快照信息是你执行这个scroll查询时的快照。在这个查询后的任…

【selenium】八大元素定位方式|xpath css id name...

目录 一、基础元素定位 二、cssSelector元素定位——通过元素属性定位 三、xpath元素定位——通过路径 1 、xpath绝对定位 (用的不多) 缺点:一旦页面结构发生变化(比如重新设计时,路径少两节)&#x…

跨境电商营销推广:法律合规指引与风险管理策略

在全球数字化时代,跨境电商正成为国际贸易的重要组成部分。然而,在跨境电商的营销推广过程中,合规问题不容忽视。为了避免法律纠纷,企业需要了解并遵守各国的法律法规。本文将深入探讨跨境电商在营销推广中需要遵守的法律法规&…

Android 面试问题 2024 版(其二)

Android 面试问题 2024 版(其二) 六、多线程和并发七、性能优化八、测试九、安全十、Material设计和 **UX/UI** 六、多线程和并发 Android 中的进程和线程有什么区别? 答:进程是在自己的内存空间中运行的应用程序的单独实例&…