opengl 学习着色器

news2024/11/19 0:41:21

一.GLSL

        着色器是使用一种叫GLSL的类C语言写成的。GLSL着色器编码顺序:声明版本==》定义输入输出==》uniform==》main函数。每个着色器的入口点是main函数,在main函数中我们处理所有的输入变量,并将结果输出到输出变量中。如下图:

#version version_number
in type in_variable_name;
in type in_variable_name;

out type out_variable_name;

uniform type uniform_name;

int main()
{
  // 处理输入并进行一些图形操作
  ...
  // 输出处理过的结果到输出变量
  out_variable_name = weird_stuff_we_processed;
}

二.顶点着色器(补充) 

        顶点着色器的每个输入变量也叫顶点属性,我们能够声明的定点属性是有上限的,它通常由硬件决定。OpenGL确保至少有16个包含4分量的顶点属性可用,但是有些硬件或许允许更多的顶点属性,你可以查询GL_MAX_VERTEX_ATTRIBS来获取具体的上限:

int nrAttributes;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &nrAttributes);
std::cout << "Maximum nr of vertex attributes supported: ";

三.GLSL数据类型

        GLSL包含默认基础数据类型:intfloatdoubleuintbool。GLSL也有两种容器类型,分别是向量(Vector)和矩阵(Matrix)。这里先介绍向量,后面在学矩阵。

四.向量

        GLSL中的向量是一个可以包含有2、3或者4个分量的容器,分量的类型可以是前面默认基础类型的任意一个。它们可以是下面的形式(n代表分量的数量):

类型含义
vecn包含n个float分量的默认向量
bvecn包含n个bool分量的向量
ivecn包含n个int分量的向量
uvecn包含n个unsigned int分量的向量
dvecn包含n个double分量的向量

        一个向量的分量可以通过vec.x这种方式获取,这里x是指这个向量的第一个分量。你可以分别使用.x.y.z.w来获取它们的第1、2、3、4个分量。GLSL也允许你对颜色使用rgba,或是对纹理坐标使用stpq访问相同的分量。

        向量这一数据类型也允许一些有趣而灵活的分量选择方式,叫做重组(Swizzling)。重组允许这样的语法:

vec2 someVec;
vec4 differentVec = someVec.xyxx;
vec3 anotherVec = differentVec.zyw;
vec4 otherVec = someVec.xxxx + anotherVec.yxzy;

        你可以使用上面4个字母任意组合来创建一个和原来向量一样长的(同类型)新向量,只要原来向量有那些分量即可;然而,你不允许在一个vec2向量中去获取.z元素。我们也可以把一个向量作为一个参数传给不同的向量构造函数,以减少需求参数的数量:

vec2 vect = vec2(0.5, 0.7);
vec4 result = vec4(vect, 0.0, 0.0);
vec4 otherResult = vec4(result.xyz, 1.0);

四.输入和输出

        着色器是许多独立的小程序,GLSL定义了inout关键字专门来实现这个目的,每个着色器使用这两个关键字设定输入和输出。只要一个输出变量与下一个着色器阶段的输入匹配,它就会传递下去。但在顶点和片段着色器中会有点不同。顶点着色器应该接收的是一种特殊形式的输入,否则就会效率低下。顶点着色器的输入特殊在,它从顶点数据中直接接收输入。它从顶点数据中直接接收输入。为了定义顶点数据该如何管理,我们使用location这一元数据指定输入变量,这样我们才可以在CPU上配置顶点属性。我们已经在前面的教程看过这个了,layout (location = 0)。顶点着色器需要为它的输入提供一个额外的layout标识,这样我们才能把它链接到顶点数据。片段着色器,它需要一个vec4颜色输出变量,因为片段着色器需要生成一个最终输出的颜色。如果你在片段着色器没有定义输出颜色,OpenGL会把你的物体渲染为黑色(或白色)。

        如果我们打算从一个着色器向另一个着色器发送数据,我们必须在发送方着色器中声明一个输出,在接收方着色器中声明一个类似的输入。当类型和名字都一样的时候,OpenGL就会把两个变量链接到一起,它们之间就能发送数据了(这是在链接程序对象时完成的)。我们用lesson2的示例修改顶点着色器和片段着色器的代码,得到:

 测试 着色器之间的参数传递
// 注意我们如何把一个vec3作为vec4的构造器的参数
// 把输出变量设置为暗红色
const char *vertexShaderSource = "#version 330 core\n"
    "layout (location = 0) in vec3 aPos;\n"
    "out vec4 vertexColor;\n"
    "void main()\n"
    "{\n"
    "   gl_Position = vec4(aPos, 1.0);\n"
    "   vertexColor = vec4(0.5, 0.0, 0.0, 1.0);\n"
    "}\0";

const char *fragmentShaderSource = "#version 330 core\n"
    "out vec4 FragColor;\n"
    "in vec4 vertexColor;\n"
    "void main()\n"
    "{\n"
        "FragColor = vertexColor;\n"
    "}\n\0";
 测试 着色器之间的参数传递 end

五.Uniform关键字

        Uniform是一种从CPU中的应用向GPU中的着色器发送数据的方式,但uniform和顶点属性有些不同。首先,uniform是全局的(Global)。全局意味着uniform变量必须在每个着色器程序对象中都是独一无二的,而且它可以被着色器程序的任意着色器在任意阶段访问。第二,无论你把uniform值设置成什么,uniform会一直保存它们的数据,直到它们被重置或更新。

下面演示如何设置uniform的值,我们让六边形的渲染颜色动起来。

 测试 Uniform
const char *fragmentShaderSource = "#version 330 core\n"
   "out vec4 FragColor;\n"
    "uniform vec4 customColor;\n"
   "void main()\n"
   "{\n"
   "FragColor = customColor;\n"
   "}\n\0";

///  测试 end
   // 着色器处理
        float timeValue = glfwGetTime();                            //获取运行的秒数
        float greenValue = (sin(timeValue) / 2.0f) + 0.5f;          //sin函数让颜色在0.0到1.0之间改变
        ///glGetUniformLocation查询uniform ourColor的位置值。
        /// 我们为查询函数提供着色器程序和uniform的名字(这是我们希望获得的位置值的来源)。
        /// 如果glGetUniformLocation返回-1就代表没有找到这个位置值。
        /// 最后,我们可以通过glUniform4f函数设置uniform值。注意,查询uniform地址不要求你之前使用过着色器程序,
        /// 但是更新一个uniform之前你必须先使用程序(调用glUseProgram),因为它是在当前激活的着色器程序中设置uniform的。
        int vertexColorLocation = glGetUniformLocation(shaderProgram, "customColor");
        glUseProgram(shaderProgram);
        glUniform4f(vertexColorLocation, 0.0f, greenValue, 0.0f, 1.0f);
        //glUseProgram(shaderProgram);
        // 着色器end

        先设置片段着色器的uniform值,我们在main函数中,渲染之前使用着色器,通过获取着色器的位置,然后设置颜色值。效果如下: 

live.csdn.net/v/364740​​​​​​

六.更多属性

        在lesson2里面,我们知道了解了VBO,VAO等关键字,这次我们学习如何设置顶点的颜色以及加入着色器中。

        1.先把顶点数组里面每个坐标后面添加一个颜色值。

    // 顶点输入六边形
    float vertices[] = {
        -0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f,
        0.5f,  0.5f, 0.0f, 1.0f, 1.0f, 0.0f,
        1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
        0.5f, -0.5f, 0.0f, 0.0f, 1.0f, 1.0f,
        -0.5f, -0.5f, 0.0f, 0.0f, 0.0f, 1.0f,
        -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f
    };

        2. 顶点着色器,使它能够接收颜色值作为一个顶点属性输入。需要注意的是我们用layout标识符来把aColor属性的位置值设置为1:

/// 测试将定点着色器添加颜色值
const char *vertexShaderSource = "#version 330 core\n"
    "layout (location = 0) in vec3 aPos;\n"
    "layout (location = 1) in vec3 aColor;\n"
    "out vec3 ourColor;\n"
    "void main()\n"
    "{\n"
    "   gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);\n"
    "   ourColor = aColor;\n"
    "}\0";

const char *fragmentShaderSource = "#version 330 core\n"
    "in vec3 ourColor;\n"
    "out vec4 FragColor;\n"
    "void main()\n"
    "{\n"
        "FragColor = vec4(ourColor, 1.0f);\n"
    "}\n\0";
/// 测试 end

        3.计算VAO里顶点着色器解析的位置和颜色。

 // 解析顶点数据
    // 第一个参数: 0, 着色器的location = 0,对应这里的0
    // 第二个参数: 3, 顶点数据是3个坐标构成,这里是3
    // 第三个参数: 数据类型GL_FLOAT
    // 第四个参数: 是否标准化,标准化就会映射到0~1之间
    // 第五个参数步长: 表示每个顶点的所占空间的大小
    // 第六个参数: 代表偏移,默认位置为0
    //glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
    // 启动顶点属性
    //glEnableVertexAttribArray(0);

    // 位置属性
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);
    // 颜色属性
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)(3 * sizeof(float)));
    glEnableVertexAttribArray(1);

         4.得到的效果如下:

 这是原作者给出的图像解释:(原作者是3角形,我们是六边形,下面的颜色数量为6)

这个图片可能不是你所期望的那种,因为我们只提供了3个颜色,而不是我们现在看到的大调色板。这是在片段着色器中进行的所谓片段插值(Fragment Interpolation)的结果。当渲染一个三角形时,光栅化(Rasterization)阶段通常会造成比原指定顶点更多的片段。光栅会根据每个片段在三角形形状上所处相对位置决定这些片段的位置。
基于这些位置,它会插值(Interpolate)所有片段着色器的输入变量。比如说,我们有一个线段,上面的端点是绿色的,下面的端点是蓝色的。如果一个片段着色器在线段的70%的位置运行,它的颜色输入属性就会是一个绿色和蓝色的线性结合;更精确地说就是30%蓝 + 70%绿。

这正是在这个三角形中发生了什么。我们有3个顶点,和相应的3个颜色,从这个三角形的像素来看它可能包含50000左右的片段,片段着色器为这些像素进行插值颜色。如果你仔细看这些颜色就应该能明白了:红首先变成到紫再变为蓝色。片段插值会被应用到片段着色器的所有输入属性上。

七.编写我们自己的着色器(重点来啦)

         编写、编译、管理着色器是件麻烦事。在着色器主题的最后,我们会写一个类来让我们的生活轻松一点,它可以从硬盘读取着色器,然后编译并链接它们,并对它们进行错误检测,这就变得很好用了。这也会让你了解该如何封装目前所学的知识到一个抽象对象中。

编写定点和片段着色器代码文件:

#version 330 core
layout (location = 0) in vec3 aPos;
out vec4 vertexColor;
void main()
{
   gl_Position = vec4(aPos, 1.0);
   vertexColor = vec4(0.5, 0.0, 0.0, 1.0);
}
#version 330 core
out vec4 FragColor;
uniform vec4 customColor;
void main()
{
	FragColor = customColor;
}

 封装着色器类:

shader.h

#pragma once
// 包含glad来获取所有的必须OpenGL头文件
#include <glad/glad.h>
#include <string>
#include <fstream>
#include <sstream>
#include <iostream>


class Shader
{
public:
    // 程序ID
    unsigned int ID;

    // 构造器读取并构建着色器
    Shader(const char* vertexPath, const char* fragmentPath);
    // 使用/激活程序
    void use();
    // uniform工具函数
    void setFloat(const std::string &name, float value) const;
};

shader.cpp

#include "shader.h"

Shader::Shader(const char* vertexPath, const char* fragmentPath)
{
    // 1. 从文件路径中获取顶点/片段着色器
    std::string vertexCode;
    std::string fragmentCode;
    std::ifstream vShaderFile;
    std::ifstream fShaderFile;
    // 保证ifstream对象可以抛出异常:
    vShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
    fShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
    try
    {
        // 打开文件
        vShaderFile.open(vertexPath);
        fShaderFile.open(fragmentPath);
        std::stringstream vShaderStream, fShaderStream;
        // 读取文件的缓冲内容到数据流中
        vShaderStream << vShaderFile.rdbuf();
        fShaderStream << fShaderFile.rdbuf();
        // 关闭文件处理器
        vShaderFile.close();
        fShaderFile.close();
        // 转换数据流到string
        vertexCode   = vShaderStream.str();
        fragmentCode = fShaderStream.str();
    }
    catch(std::ifstream::failure e)
    {
        std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ" << std::endl;
    }
    const char* vShaderCode = vertexCode.c_str();
    const char* fShaderCode = fragmentCode.c_str();

    // 2. 编译着色器
    unsigned int vertex, fragment;
    int success;
    char infoLog[512];

    // 顶点着色器
    vertex = glCreateShader(GL_VERTEX_SHADER);
    glShaderSource(vertex, 1, &vShaderCode, NULL);
    glCompileShader(vertex);
    // 打印编译错误(如果有的话)
    glGetShaderiv(vertex, GL_COMPILE_STATUS, &success);
    if(!success)
    {
        glGetShaderInfoLog(vertex, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
    }
    // 片段着色器
    fragment = glCreateShader(GL_FRAGMENT_SHADER);
    glShaderSource(fragment, 1, &fShaderCode, NULL);
    glCompileShader(fragment);
    glGetShaderiv(fragment, GL_COMPILE_STATUS, &success);
    if(!success)
    {
        glGetShaderInfoLog(fragment, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
    }

    // 着色器程序
    ID = glCreateProgram();
    glAttachShader(ID, vertex);
    glAttachShader(ID, fragment);
    glLinkProgram(ID);
    // 打印连接错误(如果有的话)
    glGetProgramiv(ID, GL_LINK_STATUS, &success);
    if(!success)
    {
        glGetProgramInfoLog(ID, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
    }

    // 删除着色器,它们已经链接到我们的程序中了,已经不再需要了
    glDeleteShader(vertex);
    glDeleteShader(fragment);
}

void Shader::use()
{
    glUseProgram(ID);
}


void Shader::setFloat(const std::string &name, float value) const
{
    glUniform4f(glGetUniformLocation(ID, name.c_str()),  0.0f, value, 0.0f, 1.0f);
}

 在main函数中使用着色器类:

        真正实现的代码就两句:

           Shader ourShader("D:/opengl/learning-opengl/lesson3/createtriangle/shader.vs", "D:/opengl/learning-opengl/lesson3/createtriangle/shader.fs");

          // 测试从文件读取着色器
           ourShader.use();
           ourShader.setFloat("customColor", greenValue);

int main()
{
    // 告知opengl我们使用的版本和渲染模式
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

    // mac 下需要这句话
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
    // end

    // 创建opengl窗口
    GLFWwindow* window = glfwCreateWindow(800, 600, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }

    // 创建上下文
    glfwMakeContextCurrent(window);
    // 渲染窗口自适应
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    // glad加载
    if(!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "failed to init glad!" << std::endl;
    }

    // // 构建顶点着色器
    // // 1.创建着色器对象
    // unsigned int vertexShader;
    // vertexShader = glCreateShader(GL_VERTEX_SHADER);
    // // 2.将着色器代码关联到对象上并编译
    // glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
    // glCompileShader(vertexShader);
    // // 3.检查编译是否成功
    // int  success;
    // char infoLog[512];
    // glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
    // if(!success)
    // {
    //     glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);
    //     std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
    // }
    // // 构建片段着色器
    // unsigned int fragmentShader;
    // fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
    // glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
    // glCompileShader(fragmentShader);
    // glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);
    // if(!success)
    // {
    //     glGetShaderInfoLog(fragmentShader, 512, NULL, infoLog);
    //     std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
    // }
    // // 编译完成之后链接到程序对象
    // unsigned int shaderProgram;
    // shaderProgram = glCreateProgram();
    // glAttachShader(shaderProgram, vertexShader);
    // glAttachShader(shaderProgram, fragmentShader);
    // glLinkProgram(shaderProgram);
    // glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);
    // // 判断是否链接程序成功
    // if(!success) {
    //     glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);
    // }
    // // 使用程序
    // //glUseProgram(shaderProgram);
    // // 删除着色器对象,在把着色器对象链接到程序对象以后,记得删除着色器对象,我们不再需要它们
    // glDeleteShader(vertexShader);
    // glDeleteShader(fragmentShader);

    Shader ourShader("D:/opengl/learning-opengl/lesson3/createtriangle/shader.vs", "D:/opengl/learning-opengl/lesson3/createtriangle/shader.fs");

    // 顶点输入六边形
    float vertices[] = {
        -0.5f, 0.5f, 0.0f,
        0.5f,  0.5f, 0.0f,
        1.0f, 0.0f, 0.0f,
        0.5f, -0.5f, 0.0f,
        -0.5f, -0.5f, 0.0f,
        -1.0f, 0.0f, 0.0f
    };

    // float vertices[] = {
    //     -0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f,
    //     0.5f,  0.5f, 0.0f, 1.0f, 1.0f, 0.0f,
    //     1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
    //     0.5f, -0.5f, 0.0f, 0.0f, 1.0f, 1.0f,
    //     -0.5f, -0.5f, 0.0f, 0.0f, 0.0f, 1.0f,
    //     -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f
    // };

    unsigned int indices[] = {0, 1, 2, 0, 2, 3, 0, 3, 4, 0, 4, 5};
    // 建立缓冲对象
    unsigned int VBO;
    unsigned int VAO;
    unsigned int EBO;
    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);
    glGenBuffers(1, &EBO);
    glBindVertexArray(VAO);
    // 绑定到缓冲buffer
    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    // 刷入缓冲buffer
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);
    // 解析顶点数据
    // 第一个参数: 0, 着色器的location = 0,对应这里的0
    // 第二个参数: 3, 顶点数据是3个坐标构成,这里是3
    // 第三个参数: 数据类型GL_FLOAT
    // 第四个参数: 是否标准化,标准化就会映射到0~1之间
    // 第五个参数步长: 表示每个顶点的所占空间的大小
    // 第六个参数: 代表偏移,默认位置为0
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
    // 启动顶点属性
    glEnableVertexAttribArray(0);

    // // 位置属性
    // glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
    // glEnableVertexAttribArray(0);
    // // 颜色属性
    // glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)(3 * sizeof(float)));
    // glEnableVertexAttribArray(1);

    // 解绑VAO
    glBindBuffer(GL_ARRAY_BUFFER, 0);
    glBindVertexArray(0);
    // 等待用户关闭窗口
    while(!glfwWindowShouldClose(window))
    {
        processInput(window);
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT);

        // 着色器处理uniform
        float timeValue = glfwGetTime();                            //获取运行的秒数
        float greenValue = (sin(timeValue) / 2.0f) + 0.5f;          //sin函数让颜色在0.0到1.0之间改变
        // ///glGetUniformLocation查询uniform ourColor的位置值。
        // /// 我们为查询函数提供着色器程序和uniform的名字(这是我们希望获得的位置值的来源)。
        // /// 如果glGetUniformLocation返回-1就代表没有找到这个位置值。
        // /// 最后,我们可以通过glUniform4f函数设置uniform值。注意,查询uniform地址不要求你之前使用过着色器程序,
        // /// 但是更新一个uniform之前你必须先使用程序(调用glUseProgram),因为它是在当前激活的着色器程序中设置uniform的。
        // int vertexColorLocation = glGetUniformLocation(shaderProgram, "customColor");
        // glUseProgram(shaderProgram);
        // glUniform4f(vertexColorLocation, 0.0f, greenValue, 0.0f, 1.0f);
        // 着色器end
        //glUseProgram(shaderProgram);

        // 测试从文件读取着色器
        ourShader.use();
        ourShader.setFloat("customColor", greenValue);

        // 3. 绘制物体

        glBindVertexArray(VAO);
        glDrawElements(GL_TRIANGLES, 12, GL_UNSIGNED_INT, 0);
        // 双缓冲交换
        glfwSwapBuffers(window);
        // 响应各种交互事件
        glfwPollEvents();
    }
    // 释放资源
    glfwTerminate();
    return 0;
}


效果同uniform的动画一样。截图如下:

        到这里基本就简单的学习了着色器。

八.学习地址:(感谢原作者的讲解)

着色器 - LearnOpenGL CN (learnopengl-cn.github.io)

九.demo地址:

learningOpengl: 一起学习opengl

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1462111.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Nginx----高性能的WEB服务端

一、Nginx介绍 1、什么是Nginx Nginx Nginx是一个高性能的HTTP和反向代理服务器。是一款轻量级的高性能的web服务器/反向代理服务器/电子邮件&#xff08;IMAP/POP3&#xff09;代理服务器&#xff0c;单台物理服务器可支持30 000&#xff5e;50 000个并发请求。 一款高性能…

【广度优先搜索】【网格】【割点】【 推荐】1263. 推箱子

作者推荐 视频算法专题 涉及知识点 广度优先搜索 网格 割点 并集查找 LeetCode:1263. 推箱子 「推箱子」是一款风靡全球的益智小游戏&#xff0c;玩家需要将箱子推到仓库中的目标位置。 游戏地图用大小为 m x n 的网格 grid 表示&#xff0c;其中每个元素可以是墙、地板或…

项目中使用Echarts图表treemap制作

Examples - Apache ECharts 页面结构 <template><div class"echart-chart" :id"id"></div> </template> <script> import { getOption } from ./chartOption; export default {name: TreeMapChart,props: [id, data, type]…

LaWGPT—基于中文法律知识的大模型

文章目录 LaWGPT&#xff1a;基于中文法律知识的大语言模型数据构建模型及训练步骤两个阶段二次训练流程指令精调步骤计算资源 项目结构模型部署及推理 LawGPT_zh&#xff1a;中文法律大模型&#xff08;獬豸&#xff09;数据构建知识问答模型推理训练步骤 LaWGPT&#xff1a;基…

红蓝对抗:网络安全领域的模拟实战演练

引言&#xff1a; 随着信息技术的快速发展&#xff0c;网络安全问题日益突出。为了应对这一挑战&#xff0c;企业和组织需要不断提升自身的安全防护能力。红蓝对抗作为一种模拟实战演练方法&#xff0c;在网络安全领域得到了广泛应用。本文将介绍红蓝对抗的概念、目的、过程和…

微服务篇之监控

一、为什么要监控 1.问题定位 假设客户端查询一些东西的时候&#xff0c;需要经过网关&#xff0c;然后服务A调用服务H&#xff0c;服务H调用K&#xff0c;服务K调用MySQL&#xff0c;当查询不出来的时候&#xff0c;我们不能快速定位到底是哪个服务的问题&#xff0c;这就需要…

量子加密机的工作原理是什么

量子加密机&#xff0c;作为现代加密技术的一大飞跃&#xff0c;正逐渐成为信息安全领域的研究热点。与传统的加密方法相比&#xff0c;量子加密技术以其独特的优势&#xff0c;为信息安全提供了更为坚实的保障。 量子加密的核心在于利用量子力学的特性&#xff0c;尤其是量子纠…

uni-app 开发调试自动打开手机屏幕大小界面(Aidex移动端开发项目)

上效果&#xff1a; 下载Aidex的移动端项目并打开&#xff1a; 若依-ruoyi-AiDex-Uniapp: 若依-Ruoyi APP 移动解决方案&#xff0c;基于uniappuView封装的一套基础模版&#xff0c;开箱即用&#xff0c;免费开源&#xff0c;一份代码多终端适配&#xff0c;支持H5、支付宝小程…

Python hasattr函数

在Python编程中&#xff0c;hasattr()函数是一个非常有用的内置函数之一&#xff0c;用于检查对象是否具有指定的属性或方法。这个函数能够帮助我们在运行时动态地检查对象的属性和方法&#xff0c;从而避免由于缺少属性或方法而导致的异常。本文将深入探讨Python中的hasattr()…

unity学习(36)——角色选取界面(自制美工)

1.添加一个背景图片&#xff0c;记不住可以查之前的资料&#xff08;4&#xff09; 图片拖入asset&#xff0c;属性设成sprite&#xff1b;把图片拖到source image中&#xff1b;colour白色&#xff08;透明&#xff0c;点一下右边的笔即可&#xff09;&#xff1b;material为…

《Python 语音转换简易速速上手小册》第2章 Python 编程基础(2024 最新版)

文章目录 2.1 Python 语言基础2.1.1 基础知识深入基础总结 2.1.2 主要案例&#xff1a;数据分析脚本案例介绍案例 Demo案例分析 2.1.3 扩展案例 1&#xff1a;自动化邮件发送案例介绍案例 Demo案例分析 2.1.4 扩展案例 2&#xff1a;网页数据抓取案例介绍案例 Demo案例分析 2.2…

fastApi笔记05-路径参数和数值校验

使用Path可以对路径参数声明与Query相同类型的校验和元数据 from typing import Annotatedfrom fastapi import FastAPI, Path, Queryapp FastAPI()app.get("/items/{item_id}") async def read_items(item_id: Annotated[int, Path(title"The ID of the item …

怎样使用Pyglet库给推箱子游戏画关卡地图

目录 pyglet库 画图事件 按键事件 程序扩展 关卡地图 pyglet库 是一个跨平台的Python多媒体库&#xff0c;提供了一个简单易用的接口来创建窗口、加载图像和视频、播放音频、处理用户输入事件以及进行2D图形绘制。特别适合用于游戏开发、视听应用以及其它需要高效图形渲染…

32单片机基础:OLED调试工具的使用

下面会介绍OLED显示屏的驱动函数模块&#xff0c;先学会如何使用&#xff0c;至于OLED屏幕的原理和代码编写&#xff0c; 我们之后会再写一篇。 现在我们就是用OLED当一个调试的显示屏&#xff0c;方便我们调试程序。 为什么要调试呢&#xff0c;是为了方便我们看现象&#…

提升网络质量:UDPspeeder 实现网络优化与提速

提升网络质量&#xff1a;UDPspeeder 实现网络优化与提速 背景与意义原理与功能使用方法未来展望相关链接服务 在当今高度互联的网络环境下&#xff0c;网络质量的优化和提速对于用户体验至关重要。针对高延迟和丢包率较高的网络链路&#xff0c;UDPspeeder 提供了一种前向纠错…

推荐一个内网穿透工具,支持Windows桌面、Linux、Arm平台客户端

神卓互联是一款常用的内网穿透工具&#xff0c;它可以将本地服务器映射到公网上&#xff0c;并提供域名或子域名给外部访问。神卓互联具有简单易用、高速稳定的特点&#xff0c;支持Windows桌面版、Linux版、Arm版客户端&#xff0c;以及硬件等。 神卓互联内网穿透技术简介 企…

AndroidStudio 2024-2-21 Win10/11最新安装配置(Ktlion快速构建配置,gradle镜像源)

AndroidStudio 2024 Win10/11最新安装配置 教程目的&#xff1a; (从安装到卸载) &#xff0c;针对Kotlin开发配置&#xff0c;gradle-8.2-src/bin下载慢&#xff0c;以及Kotlin构建慢的解决 好久没玩AS了,下载发现装个AS很麻烦,就觉得有必要出个教程了(就是记录一下:嘻嘻) 因…

【力扣 - 二叉树的直径】

题目描述 给你一棵二叉树的根节点&#xff0c;返回该树的 直径 。 二叉树的 直径 是指树中任意两个节点之间最长路径的 长度 。这条路径可能经过也可能不经过根节点 root 。 两节点之间路径的 长度 由它们之间边数表示。 提示&#xff1a; 树中节点数目在范围 [1, 10000] 内…

Java基础API(2) String、StringBuilder详解

文章目录 &#x1f378;1. String类&#x1f349;&#x1f349;1.1 String概述&#x1f349;&#x1f349;1.2 String类的构造方法&#x1f349;&#x1f349;1.3 创建字符串对象的区别对比&#x1f349;&#x1f349;1.4 字符串的比较1.4.1 字符串的比较 &#x1f349;&#x…

为企业打造的人脸美肤解决方案

随着人工智能和图像处理技术的飞速发展&#xff0c;美颜美肤技术在众多领域&#xff0c;特别是社交娱乐、电子商务和广告行业中的应用日益广泛。为了满足企业对于高质量图像处理的需求&#xff0c;美摄科技推出了一款先进的基础人脸美肤解决方案。 美摄科技的基础人脸美肤解决…