【大厂AI课学习笔记】【2.2机器学习开发任务实例】(9)模型优化

news2025/1/11 18:39:50

模型训练后,就要进行模型优化了。

一般来讲,很简单,优化就是不换模型换参数,或者直接换模型。

换了之后来对比,最后选个最好的。

比如在本案例中,选择LinearRegression后,MSE从22下降到12,因此选择新的模型。

取前20个验证集数据,将标注数据与实际房价对比关系如上图。

可以看到,效果还是很好的。

 

LinearRegression是线性回归算法。线性回归算法是一种通过对样本特征进行线性组合来进行预测的线性模型,其目的是找到一条直线或一个平面(在多维空间中)来最小化预测值与真实值之间的误差。它假设输入特征与目标变量之间存在线性关系,并通过学习这种关系的权重和截距来进行预测。

线性回归算法的优点

  1. 简单且易于实现:线性回归模型相对简单,计算复杂度低,容易理解和实现。
  2. 可解释性强:线性回归模型的权重可以直接解释为特征对目标变量的影响程度,有助于理解数据背后的关系。
  3. 适用于许多场景:线性回归广泛应用于各种领域,如金融、经济、社会科学等,用于预测和解释连续值变量。
  4. 可作为其他复杂模型的基础:许多复杂的机器学习模型(如神经网络)可以看作是线性模型的扩展或组合。

线性回归算法的缺点

  1. 对非线性关系建模能力有限:如果数据之间的关系是非线性的,线性回归模型可能无法很好地拟合数据,导致预测性能下降。
  2. 对异常值和噪声敏感:线性回归模型容易受到异常值和噪声的影响,这可能导致模型的不稳定或偏差。
  3. 需要特征选择和预处理:在使用线性回归之前,通常需要进行特征选择和预处理(如标准化、归一化等),以改善模型的性能和稳定性。如果特征选择不当或预处理不充分,可能会影响模型的预测效果。
  4. 可能过拟合或欠拟合:如果模型过于复杂(即过拟合),它可能会过于关注训练数据中的噪声和细节,导致在新数据上的泛化能力下降。相反,如果模型过于简单(即欠拟合),它可能无法捕捉到数据中的复杂关系,导致预测性能不佳。因此,在选择模型复杂度时需要谨慎权衡。

延伸学习:


模型优化的定义
模型优化是指在机器学习任务中,通过改进模型结构、调整模型参数、优化训练策略等方式,提高模型在特定任务上的性能、效率、稳定性或可解释性的过程。优化的目标可以是降低模型的预测误差、提高模型的泛化能力、减少模型的计算复杂度或增强模型对噪声和异常值的鲁棒性等。

模型优化的步骤

  1. 问题定义与数据准备:明确任务目标,收集并准备相关数据,包括特征工程、数据清洗和预处理等。
  2. 模型选择与构建:根据任务特点选择合适的算法和模型结构,进行初步的模型构建。
  3. 模型训练与评估:使用训练数据对模型进行训练,并利用验证数据对模型性能进行评估,包括误差分析、过拟合与欠拟合判断等。
  4. 模型优化:根据评估结果,采用各种优化技术对模型进行改进,如调整模型参数、改进模型结构、引入正则化等。
  5. 模型部署与监控:将优化后的模型部署到生产环境,并持续监控模型的性能,及时发现并解决潜在问题。

模型优化的关键技术

  • 特征工程:包括特征选择、特征构造、特征转换等,以提高数据的表达能力和模型的性能。
  • 参数调优:通过网格搜索、随机搜索、贝叶斯优化等方法,找到模型的最佳参数配置。
  • 模型融合:将多个模型的预测结果进行组合,以提高整体预测性能,如袋装(Bagging)、提升(Boosting)等。
  • 正则化技术:通过引入惩罚项来约束模型复杂度,防止过拟合,如L1正则化、L2正则化等。
  • 模型压缩与剪枝:通过去除模型中的冗余参数或结构,减小模型大小和计算复杂度,同时保持或接近原始模型的性能。
  • 迁移学习:利用在相关领域或任务上预训练的模型作为起点,通过微调适应新任务,加速模型训练和提高性能。
  • 自动化机器学习(AutoML):利用算法自动选择模型、调优参数和进行特征工程等,减少人工干预和提高工作效率。

模型优化的思路

  1. 从数据出发:深入理解数据特点,挖掘有用特征,去除冗余和噪声信息。
  2. 先简单后复杂:从简单的模型开始尝试,逐步增加模型复杂度,避免一开始就陷入复杂的模型调整中。
  3. 实验与对比:通过大量的实验对比不同模型、不同参数配置下的性能差异,找到最佳方案。
  4. 持续迭代与改进:模型优化是一个持续的过程,需要不断根据实际应用场景和需求进行迭代和改进。
  5. 关注可解释性:在追求性能的同时,也要关注模型的可解释性,以便更好地理解和信任模型的预测结果。

其他重要内容

  • 评估指标的选择:根据任务类型和目标选择合适的评估指标,如准确率、召回率、F1分数、AUC等,以全面评估模型的性能。
  • 交叉验证:使用交叉验证技术来评估模型的稳定性和泛化能力,避免过拟合或欠拟合现象的发生。
  • 超参数搜索策略:制定有效的超参数搜索策略,以在合理的计算成本内找到最佳的参数配置。这可以包括手动调整、网格搜索、随机搜索或更高级的搜索算法(如贝叶斯优化)。
  • 模型部署的考虑:优化后的模型需要能够顺利地部署到生产环境中,并考虑到实时性、稳定性、安全性等方面的要求。这可能需要与工程团队紧密合作,确保模型的顺利落地和持续监控。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1459765.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LWM(LargeWorldModel)大世界模型-可文字可图片可视频-多模态LargeWorld-详细安装记录

说明 Large World Model(LWM)是一个通用的大环境多模态自回归模型,它利用了一个技术名为RingAttention,通过在大型的多样化视频和图书数据集上的训练,实现了对语言、图像和视频的理解与生成能力。 在github上已有4.2k…

医疗在线问诊小程序:开启数字化医疗新篇章

随着科技的飞速发展,医疗行业正逐步向数字化转型。其中,医疗在线问诊小程序作为一种新型的医疗健康服务模式,为人们提供了更为便捷、高效的医疗咨询服务。本文将探讨医疗在线问诊小程序的发展背景、优势及应用场景,以期为医疗行业…

视频生成模型:构建虚拟世界的模拟器 [译]

原文:Video generation models as world simulators 我们致力于在视频数据上开展生成模型的大规模训练。具体来说,我们针对不同时长、分辨率和宽高比的视频及图像,联合训练了基于文本条件的扩散模型。我们采用了一种 Transformer 架构&#…

第三百五十七回

文章目录 1. 概念介绍2. 使用方法2.1 List2.2 Map2.3 Set 3. 示例代码4. 内容总结 我们在上一章回中介绍了"convert包"相关的内容,本章回中将介绍collection.闲话休提,让我们一起Talk Flutter吧。 1. 概念介绍 我们在本章回中介绍的内容是col…

第3.2章:Doris-2.0数据导入——Compaction机制

目录 一、Compaction概述 1.1 LSM-Tree概述 1.2 Compaction概述 1.3 Rowset数据版本 1.4 Compaction优点 1.5 Compaction问题 1.5.1 Compaction速度低 1.5.2 写放大问题 1.6 Compaction调优 1.6.1 业务侧 1.6.2 运维侧 二、Compaction执行方式 2.1 Vertical Com…

【Unity】【VR开发】Unity云同步功能使用心得

【背景】 有时出差,旅行等等也带着电脑,晚上想要继续编辑项目,就需要用到云同步功能。目前实践下来,发现有些内容可以同步,有些内容则是不可以同步的,总结如下。 【如何云同步一个本地项目】 UnityHub的项目面板中有两个选项卡:项目和云端项目。 鼠标挪动到想要云同步…

Linux——信号(3)

经过前两部分的介绍,我们现在已经认识了信号是如何产生的,并且知道无 论信号是如何产生的,最终只能由操作系统来对特定进程发送信号,而发送 信号其实也就是写信号,往内核数据结构(pending表)中写…

STM32引脚重定义问题

最近在搞资源管理,发现有些引脚不能用 比如这个PE引脚。我想用他输出PWM,但是不能用,我也重定义了,还是不能用。回去翻看了技术手册。 RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE); //重映射引脚功能,需…

Java面试题:volatile专题

王有志,一个分享硬核Java技术的互金摸鱼侠 加入Java人的提桶跑路群:共同富裕的Java人 今天是《面霸的自我修养》第4篇文章,我们一起来看看面试中会问到哪些关于volatile的问题吧。数据来源: 大部分来自于各机构(Java之父,Java继父,某灵,某泡,某客)以及各博主整理文档…

解决Ubuntu中vscode右键没有create catkin package

右键发现没有这个create catkin package 解决方案: 查了一会发现安装个拓展就可以了 效果:

最新Unity游戏主程进阶学习大纲(2个月)

过完年了,很多同学开始重新规划自己的职业方向,找更好的机会,准备升职或加薪。今天给那些工作了1~5年的开发者梳理”游戏开发客户端主程”的学习大纲,帮助大家做好面试准备。适合Unity客户端开发者。进阶主程其实就是从固定的几个方面搭建好完整的知识体…

【Spring】创建和使用

目 录 一.创建 Spring 项目1.1 创建⼀个 Maven 项目1.2 添加 Spring 框架依赖1.3 手动创建启动类 二.将 Bean 对象存储到 Spring2.1创建Bean对象2.2将 Bean 存储到 Spring 三.获取并使用 Bean 对象3.1 创建 Spring 上下文3.2 获取指定的 Bean 对象3.3 使用 Bean 四.总结 经过前…

Elasticsearch:创建自定义 ES Rally tracks 的分步指南

作者:Alejandro Snchez 按照这个综合教程学习如何制作个性化的 Rally tracks ES Rally 是什么?它的用途是什么? ES Rally 是一个用于在 Elasticsearch 上测试性能的工具,允许你运行和记录比较测试。 做出决策可能很困难&#x…

体感互动游戏定制开发:创新与技术的交融

体感互动游戏是一种结合体感技术和游戏娱乐的新型形式,为玩家提供了更加身临其境的游戏体验。而要开发一款成功的体感互动游戏,需要一支跨学科的团队,他们将创新与技术有机地结合,以满足用户的需求和期待。 首先,游戏…

钉钉小程序 没有调用该接口的权限

钉钉小程序 没有调用该接口的权限 problem 钉钉官方自带免登陆小程序 后端接口报错 {"errcode":60011,"errmsg":"没有调用该接口的权限,接口权限申请参考:https://open.dingtalk.com/document/orgapp-server/add-api-permiss…

Flutter插件开发指南02: 事件订阅 EventChannel

Flutter插件开发指南02: 事件订阅 EventChannel 视频 https://www.bilibili.com/video/BV1zj411d7k4/ 前言 上一节我们讲了 Channel 通道,但是如果你是卫星定位业务,原生端主动推消息给 Flutter 这时候就要用到 EventChannel 通道了。 本节会写一个 1~…

C++ 二维差分 二维前缀和逆运算 差分矩阵

输入一个 n 行 m 列的整数矩阵,再输入 q 个操作,每个操作包含五个整数 x1,y1,x2,y2,c ,其中 (x1,y1) 和 (x2,y2) 表示一个子矩阵的左上角坐标和右下角坐标。 每个操作都要将选中的子矩阵中的每个元素的值加上 c 。 请你将进行完所有操作后的…

mfc140u.dll文丢失导致应用程序无法正常,有哪些解决办法

mfc140u.dll是Microsoft Foundation Classes(MFC)的一个重要组件,它提供了许多用于开发Windows应用程序的功能和工具。然而,当系统或应用程序升级、恶意软件感染或文件损坏以及用户错误操作等情况发生时,mfc140u.dll文…

力扣238和169

一:238. 除自身以外数组的乘积 1.1题目 1.2思路 1.3代码 //左右乘表 int* productExceptSelf(int* nums, int numsSize, int* returnSize) {int* answer (int*)malloc(numsSize*sizeof(int));int i 0;int left[numsSize],right[numsSize];left[0] 1;for(i 1;…