OpenGL学习——17.模型

news2025/1/13 8:09:08

前情提要:本文代码源自Github上的学习文档“LearnOpenGL”,我仅在源码的基础上加上中文注释。本文章不以该学习文档做任何商业盈利活动,一切著作权归原作者所有,本文仅供学习交流,如有侵权,请联系我删除。LearnOpenGL原网址:https://learnopengl.com/ 请大家多多支持原作者!


欢迎来到本博客文章,我们将一同探索OpenGL模型的奇妙世界。作为计算机图形学中最受欢迎的API之一,OpenGL提供了强大的工具和功能,使我们能够创建令人惊叹的三维模型和视觉效果。本文将带领您深入了解OpenGL模型的创建、加载和渲染过程,并介绍一些高级技术和优化。

无论您是一个初学者还是一个有经验的图形程序员,本文都将为您提供有用的信息和实用的技巧。我们将从基础知识开始,逐步引导您进入更高级的概念和技术。您将学习如何创建简单的几何形状并应用纹理,了解顶点缓冲对象(VBO)和索引缓冲对象(IBO)的使用,以及探索光照、阴影和其他高级渲染技术。

本文还将介绍如何使用开源库Assimp导入和加载不同格式的模型,使您能够轻松地在您的OpenGL应用程序中使用各种模型资源。我们将了解如何处理模型的顶点数据、纹理坐标、法线向量等,并展示如何应用变换矩阵对模型进行旋转、缩放和平移。

当您阅读完本文后,您将具备一定的OpenGL模型编程知识,并能够开始使用OpenGL创建自己的模型和场景。无论您是为游戏开发、虚拟现实应用、计算机辅助设计还是其他图形应用程序而学习OpenGL,本文都将为您提供坚实的基础。

让我们踏上这段令人兴奋的OpenGL模型之旅吧!让我们开始探索OpenGL的无限可能性,创造出令人惊叹的视觉体验。

项目结构:

模型压缩包下载链接:

https://s3.amazonaws.com/files.free3d.com/models/2/5ba2e2be26be8b76638b4567/27-obj.zip?X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIA5DEPHINMSI4OS3OO%2F20240220%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240220T142152Z&X-Amz-SignedHeaders=host&X-Amz-Expires=1200&X-Amz-Signature=8920c545d52277611ee3b7ebc9bf5c42b27a3f074fe85edf097b9667d5999805

(请用鼠标右键点击,在新标签页打开链接)

vs_multiple_lights.txt着色器代码:

#version 330 core
 
layout (location = 0) in vec3 aPos;   // 位置变量的属性位置值为 0 
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexCoords;
 
out vec3 FragPos;  
out vec3 Normal;
out vec2 TexCoords;
out mat4 View;
 
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
 
void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);
 
    FragPos = vec3(model * vec4(aPos, 1.0));
    Normal = mat3(transpose(inverse(model))) * aNormal;
    TexCoords = aTexCoords;
    View = view;
}

fs_multiple_lights.txt着色器代码:

#version 330 core
 
// 材质
struct Material {
    sampler2D diffuse;
    sampler2D specular;    
    float shininess;
}; 
 
// 定向光
struct DirLight {
    vec3 direction;
 
    vec3 ambient;
    vec3 diffuse;
    vec3 specular;
};  
uniform DirLight dirLight;
 
// 点光源
struct PointLight {
    vec3 position;
 
    float constant;
    float linear;
    float quadratic;
 
    vec3 ambient;
    vec3 diffuse;
    vec3 specular;
};  
#define NR_POINT_LIGHTS 4
uniform PointLight pointLights[NR_POINT_LIGHTS];
 
// 聚光
struct SpotLight {
    sampler2D spotlightMap;
    float cutOff;
    float outerCutOff;
 
    vec3 position;
    vec3 direction;
 
    float constant;
    float linear;
    float quadratic;
 
    vec3 ambient;
    vec3 diffuse;
    vec3 specular;
};
uniform SpotLight spotLight;
 
out vec4 FragColor; // 输出片段颜色
 
in vec3 FragPos;  
in vec3 Normal;
in vec2 TexCoords;
in mat4 View;
 
uniform vec3 viewPos;
uniform Material material;
 
vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir);
vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir);
vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 fragPos, vec3 viewDir);
 
void main()
{
    // 属性
    vec3 norm = normalize(Normal);
    vec3 viewDir = normalize(viewPos - FragPos);
 
    // 第一阶段:定向光照
    vec3 result = CalcDirLight(dirLight, norm, viewDir);
    // 第二阶段:点光源
    for(int i = 0; i < NR_POINT_LIGHTS; i++)
        result += CalcPointLight(pointLights[i], norm, FragPos, viewDir);    
    // 第三阶段:聚光
    result += CalcSpotLight(spotLight, norm, FragPos, viewDir);    
 
    FragColor = vec4(result, 1.0);
}
 
// 计算定向光(Calculate Direction Light)
vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir)
{
    vec3 lightDir = normalize(-light.direction);
    // 漫反射着色
    float diff = max(dot(normal, lightDir), 0.0);
    // 镜面光着色
    vec3 reflectDir = reflect(-lightDir, normal);
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
    // 合并结果
    vec3 ambient  = light.ambient  * vec3(texture(material.diffuse, TexCoords));
    vec3 diffuse  = light.diffuse  * diff * vec3(texture(material.diffuse, TexCoords));
    vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));
    return (ambient + diffuse + specular);
}
 
// 计算点光源(Calculate Point Light)
vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir)
{
    vec3 lightDir = normalize(light.position - fragPos);
    // 漫反射着色
    float diff = max(dot(normal, lightDir), 0.0);
    // 镜面光着色
    vec3 reflectDir = reflect(-lightDir, normal);
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
    // 衰减
    float distance    = length(light.position - fragPos);
    float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance));    
    // 合并结果
    vec3 ambient  = light.ambient  * vec3(texture(material.diffuse, TexCoords));
    vec3 diffuse  = light.diffuse  * diff * vec3(texture(material.diffuse, TexCoords));
    vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));
    ambient  *= attenuation;
    diffuse  *= attenuation;
    specular *= attenuation;
    return (ambient + diffuse + specular);
}
 
// 计算聚光(Calculate Spot Light)
vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 fragPos, vec3 viewDir)
{
    // 切光角
    vec3 lightDir = normalize(light.position - fragPos);
    float theta = dot(lightDir, normalize(-light.direction));
    float epsilon  = light.cutOff - light.outerCutOff;
    float intensity = clamp((theta - light.outerCutOff) / epsilon, 0.0, 1.0); 
    
    // 执行光照计算
    if(theta > light.outerCutOff) 
    {       
        vec3 lightDir = normalize(light.position - fragPos);
 
        // 漫反射着色
        float diff = max(dot(normal, lightDir), 0.0);
 
        // 镜面光着色
        vec3 reflectDir = reflect(-lightDir, normal);
        float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
 
        // 图案
        vec4 view = View * vec4(fragPos, 1.0);
        vec2 texcoord = normalize(view.xyz).xy;
 
        // 衰减
        float distance = length(light.position - fragPos);
        float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance));
  
        // 合并结果
        vec3 ambient  = light.ambient  * vec3(texture(material.diffuse, TexCoords));
        vec3 diffuse = light.diffuse  * diff * vec3(texture(material.diffuse, TexCoords));
        vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));
        vec3 spotdiffuse = diff * vec3(texture(light.spotlightMap, ((texcoord) / 0.7 + 0.5)));
 
        ambient  *= attenuation;
        diffuse  *= attenuation * intensity;
        specular *= attenuation * intensity;
        spotdiffuse *= attenuation * intensity;
 
        return (ambient + diffuse + specular);
    }
}

vs_light_cube.txt着色器代码:

#version 330 core
layout (location = 0) in vec3 aPos;   // 位置变量的属性位置值为 0 

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);
}

fs_light_cube.txt着色器代码:

#version 330 core
out vec4 FragColor; // 输出片段颜色

uniform vec3 lightCubeColor;

void main()
{
    FragColor = vec4(lightCubeColor, 1.0);
}

SHADER_H.h头文件代码:

#ifndef SHADER_H

#define SHADER_H

#include <glad/glad.h>;
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>



/* 着色器类 */
class Shader
{
public:
    /* 着色器程序 */
    unsigned int shaderProgram;

    /* 构造函数,从文件读取并构建着色器 */
    Shader(const char* vertexPath, const char* fragmentPath)
    {
        std::string vertexCode;
        std::string fragmentCode;
        std::ifstream vShaderFile;
        std::ifstream fShaderFile;
        /* 保证ifstream对象可以抛出异常: */
        vShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
        fShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
        try
        {
            /* 打开文件 */
            vShaderFile.open(vertexPath);
            fShaderFile.open(fragmentPath);
            std::stringstream vShaderStream, fShaderStream;
            /* 读取文件的缓冲内容到数据流中 */
            vShaderStream << vShaderFile.rdbuf();
            fShaderStream << fShaderFile.rdbuf();
            /* 关闭文件处理器 */
            vShaderFile.close();
            fShaderFile.close();
            /* 转换数据流到string */
            vertexCode = vShaderStream.str();
            fragmentCode = fShaderStream.str();
        }
        catch (std::ifstream::failure e)
        {
            std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ" << std::endl;
        }

        /* string类型转化为char字符串类型 */
        const char* vShaderCode = vertexCode.c_str();
        const char* fShaderCode = fragmentCode.c_str();

        /* 着色器 */
        unsigned int vertex, fragment;
        int success;
        /* 信息日志(编译或运行报错信息) */
        char infoLog[512];

        /* 顶点着色器 */
        vertex = glCreateShader(GL_VERTEX_SHADER);
        glShaderSource(vertex, 1, &vShaderCode, NULL);
        /* 编译 */
        glCompileShader(vertex);
        /* 打印编译错误(如果有的话) */
        glGetShaderiv(vertex, GL_COMPILE_STATUS, &success);
        if (!success)
        {
            glGetShaderInfoLog(vertex, 512, NULL, infoLog);
            std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
        };

        /* 片段着色器 */
        fragment = glCreateShader(GL_FRAGMENT_SHADER);
        glShaderSource(fragment, 1, &fShaderCode, NULL);
        /* 编译 */
        glCompileShader(fragment);
        /* 打印编译错误(如果有的话) */
        glGetShaderiv(fragment, GL_COMPILE_STATUS, &success);
        if (!success)
        {
            glGetShaderInfoLog(fragment, 512, NULL, infoLog);
            std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
        }

        /* 着色器程序 */
        shaderProgram = glCreateProgram();
        /* 连接顶点着色器和片段着色器到着色器程序中 */
        glAttachShader(shaderProgram, vertex);
        glAttachShader(shaderProgram, fragment);
        /* 链接着色器程序到我们的程序中 */
        glLinkProgram(shaderProgram);
        /* 打印连接错误(如果有的话) */
        glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);
        if (!success)
        {
            glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);
            std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
        }

        /* 删除着色器,它们已经链接到我们的程序中了,已经不再需要了 */
        glDeleteShader(vertex);
        glDeleteShader(fragment);
    }

    /* 激活着色器程序 */
    void use()
    {
        glUseProgram(shaderProgram);
    }

    /* 实用程序统一函数,Uniform工具函数,用于设置uniform类型的数值 */
    // ------------------------------------------------------------------------
    void setBool(const std::string& name, bool value) const
    {
        glUniform1i(glGetUniformLocation(shaderProgram, name.c_str()), (int)value);
    }
    // ------------------------------------------------------------------------
    void setInt(const std::string& name, int value) const
    {
        glUniform1i(glGetUniformLocation(shaderProgram, name.c_str()), value);
    }
    // ------------------------------------------------------------------------
    void setFloat(const std::string& name, float value) const
    {
        glUniform1f(glGetUniformLocation(shaderProgram, name.c_str()), value);
    }
    // ------------------------------------------------------------------------
    void setVec2(const std::string& name, const glm::vec2& value) const
    {
        glUniform2fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, &value[0]);
    }
    void setVec2(const std::string& name, float x, float y) const
    {
        glUniform2f(glGetUniformLocation(shaderProgram, name.c_str()), x, y);
    }
    // ------------------------------------------------------------------------
    void setVec3(const std::string& name, const glm::vec3& value) const
    {
        glUniform3fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, &value[0]);
    }
    void setVec3(const std::string& name, float x, float y, float z) const
    {
        glUniform3f(glGetUniformLocation(shaderProgram, name.c_str()), x, y, z);
    }
    // ------------------------------------------------------------------------
    void setVec4(const std::string& name, const glm::vec4& value) const
    {
        glUniform4fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, &value[0]);
    }
    void setVec4(const std::string& name, float x, float y, float z, float w) const
    {
        glUniform4f(glGetUniformLocation(shaderProgram, name.c_str()), x, y, z, w);
    }
    // ------------------------------------------------------------------------
    void setMat2(const std::string& name, const glm::mat2& mat) const
    {
        glUniformMatrix2fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, GL_FALSE, &mat[0][0]);
    }
    // ------------------------------------------------------------------------
    void setMat3(const std::string& name, const glm::mat3& mat) const
    {
        glUniformMatrix3fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, GL_FALSE, &mat[0][0]);
    }
    // ------------------------------------------------------------------------
    void setMat4(const std::string& name, const glm::mat4& mat) const
    {
        glUniformMatrix4fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, GL_FALSE, &mat[0][0]);
    }

    /* 删除着色器程序 */
    void deleteProgram()
    {
        glDeleteProgram(shaderProgram);
    }
};



#endif

camera.h头文件代码:

#ifndef CAMERA_H

#define CAMERA_H

#include <glad/glad.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

#include <vector>

/* 定义摄影机移动的几个可能选项。 */
enum Camera_Movement {
    /* 前进 */
    FORWARD,
    /* 后退 */
    BACKWARD,
    /* 左移 */
    LEFT,
    /* 右移 */
    RIGHT,
    /* 上升 */
    RISE,
    /* 下降 */
    FALL
};

/* 默认摄像机参数 */
/* 偏航角 */
const float YAW = -90.0f;
/* 俯仰角 */
const float PITCH = 0.0f;
/* 速度 */
const float SPEED = 50.5f;
/* 鼠标灵敏度 */
const float SENSITIVITY = 0.1f;
/* 视野 */
const float ZOOM = 70.0f;


/* 一个抽象的摄影机类,用于处理输入并计算相应的欧拉角、向量和矩阵,以便在OpenGL中使用 */
class Camera
{
public:
    /* 摄影机属性 */
    /* 位置 */
    glm::vec3 Position;
    /* 朝向 */
    glm::vec3 Front;
    /* 上轴 */
    glm::vec3 Up;
    /* 右轴 */
    glm::vec3 Right;
    /* 世界竖直向上方向 */
    glm::vec3 WorldUp;

    /* 偏航角 */
    float Yaw;
    /* 俯仰角 */
    float Pitch;

    /* 摄影机选项 */
    /* 移动速度 */
    float MovementSpeed;
    /* 鼠标灵敏度 */
    float MouseSensitivity;
    /* 视野 */
    float Zoom;

    /* 矢量的构造函数 */
    Camera(glm::vec3 position = glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f), float yaw = YAW, float pitch = PITCH) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVITY), Zoom(ZOOM)
    {
        Position = position;
        WorldUp = up;
        Yaw = yaw;
        Pitch = pitch;
        updateCameraVectors();
    }
    /* 标量的构造函数 */
    Camera(float posX, float posY, float posZ, float upX, float upY, float upZ, float yaw, float pitch) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVITY), Zoom(ZOOM)
    {
        Position = glm::vec3(posX, posY, posZ);
        WorldUp = glm::vec3(upX, upY, upZ);
        Yaw = yaw;
        Pitch = pitch;
        updateCameraVectors();
    }

    /* 返回使用欧拉角和LookAt矩阵计算的视图矩阵 */
    glm::mat4 GetViewMatrix()
    {
        return glm::lookAt(Position, Position + Front, Up);
    }

    /* 处理从任何类似键盘的输入系统接收的输入。接受相机定义ENUM形式的输入参数(从窗口系统中提取) */
    void ProcessKeyboard(Camera_Movement direction, float deltaTime)
    {
        float velocity = MovementSpeed * deltaTime;
        if (direction == FORWARD)
            Position += Front * velocity;
        if (direction == BACKWARD)
            Position -= Front * velocity;
        if (direction == LEFT)
            Position -= Right * velocity;
        if (direction == RIGHT)
            Position += Right * velocity;
        if (direction == RISE)
            Position += WorldUp * velocity;
        if (direction == FALL)
            Position -= WorldUp * velocity;
    }

    /* 处理从鼠标输入系统接收的输入。需要x和y方向上的偏移值。 */
    void ProcessMouseMovement(float xoffset, float yoffset, GLboolean constrainPitch = true)
    {
        xoffset *= MouseSensitivity;
        yoffset *= MouseSensitivity;

        Yaw += xoffset;
        Pitch += yoffset;

        /* 确保当俯仰角超出范围时,屏幕不会翻转 */
        if (constrainPitch)
        {
            if (Pitch > 89.0f)
                Pitch = 89.0f;
            if (Pitch < -89.0f)
                Pitch = -89.0f;
        }

        /* 使用更新的欧拉角更新“朝向”、“右轴”和“上轴” */
        updateCameraVectors();
    }

    /* 处理从鼠标滚轮事件接收的输入 */
    void ProcessMouseScroll(float yoffset)
    {
        Zoom -= (float)yoffset;
        if (Zoom < 10.0f)
            Zoom = 10.0f;
        if (Zoom > 120.0f)
            Zoom = 120.0f;
    }

private:
    /* 根据摄影机的(更新的)欧拉角计算摄影机朝向 */
    void updateCameraVectors()
    {
        /* 计算新的摄影机朝向 */
        glm::vec3 front;
        front.x = cos(glm::radians(Yaw)) * cos(glm::radians(Pitch));
        front.y = sin(glm::radians(Pitch));
        front.z = sin(glm::radians(Yaw)) * cos(glm::radians(Pitch));
        Front = glm::normalize(front);
        /* 还重新计算右轴和上轴 */
        /* 重新规范(修正)向量,因为当它们的长度越接近0或向上向下看得多时,将会导致移动速度变慢 */
        Right = glm::normalize(glm::cross(Front, WorldUp));
        Up = glm::normalize(glm::cross(Right, Front));
    }
};



#endif

MESH_H.h头文件代码:

#ifndef MESH_H
#define MESH_H

// 包含所有OpenGL类型声明
#include <glad/glad.h> 

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

#include "SHADER_H.h"

#include <string>
#include <vector>
using namespace std;

#define MAX_BONE_INFLUENCE 4

struct Vertex {
    // 位置
    glm::vec3 Position;
    // 法线
    glm::vec3 Normal;
    // 纹理坐标
    glm::vec2 TexCoords;
    // 切线
    glm::vec3 Tangent;
    // 双切线
    glm::vec3 Bitangent;
    // 影响此顶点的骨骼索引
    int m_BoneIDs[MAX_BONE_INFLUENCE];
    // 每块骨骼的权重
    float m_Weights[MAX_BONE_INFLUENCE];
};

struct Texture {
    unsigned int id;
    string type;
    string path;
};

class Mesh {
public:
    // 网格数据
    vector<Vertex>       vertices;
    vector<unsigned int> indices;
    vector<Texture>      textures;
    unsigned int VAO;

    // 建造者
    Mesh(vector<Vertex> vertices, vector<unsigned int> indices, vector<Texture> textures)
    {
        this->vertices = vertices;
        this->indices = indices;
        this->textures = textures;

        // 现在我们已经拥有了所有必需的数据,设置顶点缓冲区及其属性指针。
        setupMesh();
    }

    // 渲染网格
    void Draw(Shader& shader)
    {
        // 绑定适当的纹理
        unsigned int diffuseNr = 1;
        unsigned int specularNr = 1;
        unsigned int normalNr = 1;
        unsigned int heightNr = 1;
        for (unsigned int i = 0; i < textures.size(); i++)
        {
            // 绑定前激活正确的纹理单元
            glActiveTexture(GL_TEXTURE0 + i); 
            // 检索纹理编号(diffuse_textureN中的N)
            string number;
            string name = textures[i].type;
            if (name == "texture_diffuse")
                number = std::to_string(diffuseNr++);
            else if (name == "texture_specular")
                number = std::to_string(specularNr++); // 将无符号int转换为字符串
            else if (name == "texture_normal")
                number = std::to_string(normalNr++); // 将无符号int转换为字符串
            else if (name == "texture_height")
                number = std::to_string(heightNr++); // 将无符号int转换为字符串

            // 现在将采样器设置为正确的纹理单位
            glUniform1i(glGetUniformLocation(shader.shaderProgram, (name + number).c_str()), i);
            // 并最终绑定纹理
            glBindTexture(GL_TEXTURE_2D, textures[i].id);
        }

        // 绘制网格
        glBindVertexArray(VAO);
        glDrawElements(GL_TRIANGLES, static_cast<unsigned int>(indices.size()), GL_UNSIGNED_INT, 0);
        glBindVertexArray(0);

        // 一旦配置好,将所有内容都设置回默认值始终是一种好做法。
        glActiveTexture(GL_TEXTURE0);
    }

private:
    // 渲染数据
    unsigned int VBO, EBO;

    // 初始化所有缓冲区对象/数组
    void setupMesh()
    {
        // 创建缓冲区/阵列
        glGenVertexArrays(1, &VAO);
        glGenBuffers(1, &VBO);
        glGenBuffers(1, &EBO);

        glBindVertexArray(VAO);
        // 将数据加载到顶点缓冲区
        glBindBuffer(GL_ARRAY_BUFFER, VBO);
        // structs的一个优点是,它们的内存布局对所有项目都是顺序的。
        // 其效果是,我们可以简单地将指针传递到结构,它可以完美地转换为glm::vec3/2数组,
        // 该数组再次转换为3/2浮点,该浮点转换为字节数组。
        glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0], GL_STATIC_DRAW);

        glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
        glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);

        // 设置顶点属性指针
        // 顶点位置
        glEnableVertexAttribArray(0);
        glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)0);
        // 顶点法线
        glEnableVertexAttribArray(1);
        glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Normal));
        // 顶点纹理坐标
        glEnableVertexAttribArray(2);
        glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, TexCoords));
        // 顶点切线
        glEnableVertexAttribArray(3);
        glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Tangent));
        // 顶点双切
        glEnableVertexAttribArray(4);
        glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Bitangent));
        // 索引
        glEnableVertexAttribArray(5);
        glVertexAttribIPointer(5, 4, GL_INT, sizeof(Vertex), (void*)offsetof(Vertex, m_BoneIDs));
        // 权重
        glEnableVertexAttribArray(6);
        glVertexAttribPointer(6, 4, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, m_Weights));
        glBindVertexArray(0);
    }
};
#endif

MODEL_H.h头文件代码:

#ifndef MODEL_H
#define MODEL_H

#include <glad/glad.h> 

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include "stb_image.h"
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>

#include "MESH_H.h"
#include "SHADER_H.h"

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <map>
#include <vector>
using namespace std;

unsigned int TextureFromFile(const char* path, const string& directory, bool gamma = false);

class Model
{
public:
    // 模型数据
    vector<Texture> textures_loaded;	// 存储到目前为止加载的所有纹理,进行优化以确保纹理不会被重复加载。
    vector<Mesh>    meshes;
    string directory;
    bool gammaCorrection;

    // 构造函数,接受一个指向 3D 模型的文件路径作为参数。
    Model(string const& path, bool gamma = false) : gammaCorrection(gamma)
    {
        loadModel(path);
    }

    // 绘制该模型以及其所有网格。
    void Draw(Shader& shader)
    {
        for (unsigned int i = 0; i < meshes.size(); i++)
            meshes[i].Draw(shader);
    }

private:
    // 从文件加载具有支持的 ASSIMP 扩展名的模型,并将生成的网格存储在网格向量中。
    void loadModel(string const& path)
    {
        // 通过 ASSIMP 读取文件。
        Assimp::Importer importer;
        const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_GenSmoothNormals | aiProcess_FlipUVs | aiProcess_CalcTangentSpace);
        // 检查是否有错误。
        if (!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero
        {
            cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
            return;
        }
        // 获取文件路径的目录路径。
        directory = path.substr(0, path.find_last_of('/'));

        // process ASSIMP's root node recursively
        processNode(scene->mRootNode, scene);
    }

    // 以递归方式处理节点。处理位于节点上的每个独立网格,并对其子节点(如果有)重复此过程。
    void processNode(aiNode* node, const aiScene* scene)
    {
        // 处理当前节点上的每个网格。
        for (unsigned int i = 0; i < node->mNumMeshes; i++)
        {
            // 节点对象只包含用于索引场景中实际对象的索引。
            // 场景包含所有数据,节点仅用于组织数据(例如节点之间的关系)。
            aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
            meshes.push_back(processMesh(mesh, scene));
        }
        // 在处理完所有网格(如果有的话)后,我们递归处理每个子节点。
        for (unsigned int i = 0; i < node->mNumChildren; i++)
        {
            processNode(node->mChildren[i], scene);
        }

    }

    Mesh processMesh(aiMesh* mesh, const aiScene* scene)
    {
        // 要填充的数据。
        vector<Vertex> vertices;
        vector<unsigned int> indices;
        vector<Texture> textures;

        // 遍历每个网格的顶点。
        for (unsigned int i = 0; i < mesh->mNumVertices; i++)
        {
            Vertex vertex;
            glm::vec3 vector; // 我们声明一个占位符向量,因为Assimp使用其自己的向量类,无法直接转换为glm的vec3类,所以我们首先将数据转移到这个占位符glm::vec3中。
            // 位置
            vector.x = mesh->mVertices[i].x;
            vector.y = mesh->mVertices[i].y;
            vector.z = mesh->mVertices[i].z;
            vertex.Position = vector;
            // 法线
            if (mesh->HasNormals())
            {
                vector.x = mesh->mNormals[i].x;
                vector.y = mesh->mNormals[i].y;
                vector.z = mesh->mNormals[i].z;
                vertex.Normal = vector;
            }
            // 纹理坐标。
            if (mesh->mTextureCoords[0]) // 该网格是否包含纹理坐标?
            {
                glm::vec2 vec;
                // 一个顶点最多可以包含8个不同的纹理坐标。因此,我们假设我们不会使用顶点可以具有多个纹理坐标的模型,因此我们始终使用第一个集合(0)。
                vec.x = mesh->mTextureCoords[0][i].x;
                vec.y = mesh->mTextureCoords[0][i].y;
                vertex.TexCoords = vec;
                // 切线
                vector.x = mesh->mTangents[i].x;
                vector.y = mesh->mTangents[i].y;
                vector.z = mesh->mTangents[i].z;
                vertex.Tangent = vector;
                // 双切线
                vector.x = mesh->mBitangents[i].x;
                vector.y = mesh->mBitangents[i].y;
                vector.z = mesh->mBitangents[i].z;
                vertex.Bitangent = vector;
            }
            else
                vertex.TexCoords = glm::vec2(0.0f, 0.0f);

            vertices.push_back(vertex);
        }
        // 现在遍历每个网格的面(一个面是网格的三角形),并获取相应的顶点索引。
        for (unsigned int i = 0; i < mesh->mNumFaces; i++)
        {
            aiFace face = mesh->mFaces[i];
            // 获取面的所有索引,并将它们存储在索引向量中。
            for (unsigned int j = 0; j < face.mNumIndices; j++)
                indices.push_back(face.mIndices[j]);
        }
        // 处理材质。
        aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
        // 我们假设着色器中采样器名称的约定。每个漫反射纹理应命名为'texture_diffuseN',其中N是从1到MAX_SAMPLER_NUMBER的连续数字。
        // 其他纹理也适用相同的命名约定,下面的列表总结了各个纹理的命名方式:
        // 漫反射纹理:texture_diffuseN
        // 高光反射纹理:texture_specularN
        // 法线纹理:texture_normalN

        // 1. 漫反射贴图
        vector<Texture> diffuseMaps = loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
        textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
        // 2. 镜面反射贴图
        vector<Texture> specularMaps = loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
        textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
        // 3. 法线贴图
        std::vector<Texture> normalMaps = loadMaterialTextures(material, aiTextureType_HEIGHT, "texture_normal");
        textures.insert(textures.end(), normalMaps.begin(), normalMaps.end());
        // 4. 视差贴图
        std::vector<Texture> heightMaps = loadMaterialTextures(material, aiTextureType_AMBIENT, "texture_height");
        textures.insert(textures.end(), heightMaps.begin(), heightMaps.end());

        // 返回从提取的网格数据创建的网格对象。
        return Mesh(vertices, indices, textures);
    }

    // 检查给定类型的所有材质纹理,并在尚未加载时加载纹理。
    // 所需的信息以 Texture 结构体的形式返回。
    vector<Texture> loadMaterialTextures(aiMaterial* mat, aiTextureType type, string typeName)
    {
        vector<Texture> textures;
        for (unsigned int i = 0; i < mat->GetTextureCount(type); i++)
        {
            aiString str;
            mat->GetTexture(type, i, &str);
            // 检查纹理是否已加载,如果是,则继续下一次迭代:跳过加载新纹理。
            bool skip = false;
            for (unsigned int j = 0; j < textures_loaded.size(); j++)
            {
                if (std::strcmp(textures_loaded[j].path.data(), str.C_Str()) == 0)
                {
                    textures.push_back(textures_loaded[j]);
                    skip = true; // 已经加载了具有相同文件路径的纹理,请继续下一个(优化)。
                    break;
                }
            }
            if (!skip)
            {   // 如果纹理尚未加载,请加载它。
                Texture texture;
                texture.id = TextureFromFile(str.C_Str(), this->directory);
                texture.type = typeName;
                texture.path = str.C_Str();
                textures.push_back(texture);
                textures_loaded.push_back(texture);  // 将其作为整个模型加载的纹理存储,以确保不会不必要地加载重复的纹理。
            }
        }
        return textures;
    }
};


unsigned int TextureFromFile(const char* path, const string& directory, bool gamma)
{
    string filename = string(path);
    filename = directory + '/' + filename;

    unsigned int textureID;
    glGenTextures(1, &textureID);

    int width, height, nrComponents;
    unsigned char* data = stbi_load(filename.c_str(), &width, &height, &nrComponents, 0);
    if (data)
    {
        GLenum format;
        if (nrComponents == 1)
            format = GL_RED;
        else if (nrComponents == 3)
            format = GL_RGB;
        else if (nrComponents == 4)
            format = GL_RGBA;

        glBindTexture(GL_TEXTURE_2D, textureID);
        glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        stbi_image_free(data);
    }
    else
    {
        std::cout << "Texture failed to load at path: " << path << std::endl;
        stbi_image_free(data);
    }

    return textureID;
}
#endif

stb_image.h头文件下载地址:

https://github.com/nothings/stb/blob/master/stb_image.h

(需要科学上网)

container2.png图片:

(请右键图片另存为到你的项目文件夹中)

container2_specular.png图片:

(请右键图片另存为到你的项目文件夹中)

stb_image_S.cpp源文件代码:

/* 预处理器会修改头文件,让其只包含相关的函数定义源码 */
#define STB_IMAGE_IMPLEMENTATION
/* 图像加载头文件 */
#include "stb_image.h"

Model.cpp源文件代码:

/*
 *
 * OpenGL学习——17.模型
 * 2024年2月20日
 *
 */



#include <iostream>

#include "glad/glad.h"
#include "GLFW/glfw3.h"
#include "glad/glad.c"
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

/* 着色器头文件 */
#include "SHADER_H.h"
/* 摄影机头文件 */
#include "camera.h"
/* 图像加载头文件 */
#include "stb_image.h"
/* 模型头文件 */
#include "MODEL_H.h"

#pragma comment(lib, "glfw3.lib")
#pragma comment(lib, "opengl32.lib")
#pragma comment(lib, "assimp-vc140-mt.lib")
#pragma comment(lib, "assimp-vc140-mt.dll")

/* 屏幕宽度 */
const int screenWidth = 1600;
/* 屏幕高度 */
const int screenHeight = 900;

/* 摄影机初始位置 */
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = screenWidth / 2.0f;
float lastY = screenHeight / 2.0f;
bool firstMouse = true;

/* 两帧之间的时间 */
float deltaTime = 0.0f;
float lastFrame = 0.0f;

/* 灯光位置 */
glm::vec3 lightPos(0.0f, 0.0f, -2.0f);

/* 这是framebuffer_size_callback函数的定义,该函数用于处理窗口大小变化的回调函数。当窗口的大小发生变化时,该函数会被调用,
它会设置OpenGL视口(Viewport)的大小,以确保渲染结果正确显示。 */
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    glViewport(0, 0, width, height);
}

/* 处理用户输入 */
void processInput(GLFWwindow* window)
{
    /* 退出 */
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);

    /* 前进 */
    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        camera.ProcessKeyboard(FORWARD, deltaTime);
    /* 后退 */
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        camera.ProcessKeyboard(BACKWARD, deltaTime);
    /* 左移 */
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        camera.ProcessKeyboard(LEFT, deltaTime);
    /* 右移 */
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        camera.ProcessKeyboard(RIGHT, deltaTime);
    /* 上升 */
    if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_PRESS)
        camera.ProcessKeyboard(RISE, deltaTime);
    /* 下降 */
    if (glfwGetKey(window, GLFW_KEY_LEFT_SHIFT) == GLFW_PRESS)
        camera.ProcessKeyboard(FALL, deltaTime);
}

/* 鼠标回调函数 */
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{
    float xpos = static_cast<float>(xposIn);
    float ypos = static_cast<float>(yposIn);

    if (firstMouse)
    {
        lastX = xpos;
        lastY = ypos;
        firstMouse = false;
    }

    float xoffset = xpos - lastX;
    float yoffset = lastY - ypos;

    lastX = xpos;
    lastY = ypos;

    camera.ProcessMouseMovement(xoffset, yoffset);
}

/* 滚轮回调函数 */
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
    camera.ProcessMouseScroll(static_cast<float>(yoffset));
}

/* 纹理加载函数 */
unsigned int loadTexture(char const* path)
{
    unsigned int textureID;
    glGenTextures(1, &textureID);

    int width, height, nrComponents;
    unsigned char* data = stbi_load(path, &width, &height, &nrComponents, 0);
    if (data)
    {
        GLenum format;
        if (nrComponents == 1)
            format = GL_RED;
        else if (nrComponents == 3)
            format = GL_RGB;
        else if (nrComponents == 4)
            format = GL_RGBA;

        glBindTexture(GL_TEXTURE_2D, textureID);
        glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);

        //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
        //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        stbi_image_free(data);
    }
    else
    {
        std::cout << "Texture failed to load at path: " << path << std::endl;
        stbi_image_free(data);
    }

    return textureID;
}

int main()
{
    /* 这是GLFW库的初始化函数,用于初始化GLFW库的状态以及相关的系统资源。 */
    glfwInit();

    /* 下面两行代码表示使用OpenGL“3.3”版本的功能 */
    /* 这行代码设置OpenGL上下文的主版本号为3。这意味着我们希望使用OpenGL “3.几”版本的功能。 */
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    /* 这行代码设置OpenGL上下文的次版本号为3。这表示我们希望使用OpenGL “几.3”版本的功能。 */
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);

    /* 这行代码设置OpenGL的配置文件为核心配置文件(Core Profile)。核心配置文件是3.2及以上版本引入的,移除了一些已经被认为过时或不推荐使用的功能。 */
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

    /* 这行代码的作用是设置OpenGL上下文为向前兼容模式,但该程序无需向后兼容,所以注释掉 */
    //glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);

    /* 这行代码创建一个名为"LearnOpenGL"的窗口,窗口的初始宽度为800像素,高度为600像素。最后两个参数为可选参数,用于指定窗口的监视器(显示器),
    在此处设置为NULL表示使用默认的显示器。函数返回一个指向GLFWwindow结构的指针,用于表示创建的窗口。 */
    GLFWwindow* window = glfwCreateWindow(screenWidth, screenHeight, "LearnOpenGL", NULL, NULL);

    /* 这是一个条件语句,判断窗口是否成功创建。如果窗口创建失败,即窗口指针为NULL,执行if语句块内的代码。 */
    if (window == NULL)
    {
        /* 这行代码使用C++标准输出流将字符串"Failed to create GLFW window"打印到控制台。即打印出“GLFW窗口创建失败”的错误信息。 */
        std::cout << "Failed to create GLFW window" << std::endl;

        /* 这行代码用于终止GLFW库的运行,释放相关的系统资源。 */
        glfwTerminate();

        /* 这是main函数的返回语句,表示程序异常结束并返回-1作为退出码。在C++中,返回负数通常表示程序发生错误或异常退出。 */
        return -1;
    }

    /* 这行代码将指定的窗口的上下文设置为当前上下文。它告诉OpenGL将所有渲染操作应用于指定窗口的绘图缓冲区。
     * 这是为了确保OpenGL在正确的窗口上进行渲染。 */
    glfwMakeContextCurrent(window);

    /* 这是一个条件语句,用于检查GLAD库的初始化是否成功。gladLoadGLLoader函数是GLAD库提供的函数,用于加载OpenGL函数指针。
    glfwGetProcAddress函数是GLFW库提供的函数,用于获取特定OpenGL函数的地址。这行代码将glfwGetProcAddress函数的返回值转换为GLADloadproc类型,
    并将其作为参数传递给gladLoadGLLoader函数。如果初始化失败,即返回值为假(NULL),则执行if语句块内的代码。 */
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        /* 这行代码使用C++标准输出流将字符串"Failed to initialize GLAD"打印到控制台。即打印出“GLAD库初始化失败”的错误信息。 */
        std::cout << "Failed to initialize GLAD" << std::endl;

        /* 这是main函数的返回语句,表示程序异常结束并返回-1作为退出码。在C++中,返回负数通常表示程序发生错误或异常退出。 */
        return -1;
    }

    /* 渲染之前必须告诉OpenGL渲染窗口的尺寸大小,即视口(Viewport),这样OpenGL才只能知道怎样根据窗口大小显示数据和坐标。 */
    /* 这行代码设置窗口的维度(Dimension),glViewport函数前两个参数控制窗口左下角的位置。第三个和第四个参数控制渲染窗口的宽度和高度(像素)。 */
    /* 实际上也可以将视口的维度设置为比GLFW的维度小,这样子之后所有的OpenGL渲染将会在一个更小的窗口中显示,
     * 这样子的话我们也可以将一些其它元素显示在OpenGL视口之外。 */
    glViewport(0, 0, screenWidth, screenHeight);

    /* 这行代码设置了窗口大小变化时的回调函数,即当窗口大小发生变化时,framebuffer_size_callback函数会被调用。 */
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);

    /* 鼠标回调 */
    glfwSetCursorPosCallback(window, mouse_callback);
    /* 滚轮回调 */
    glfwSetScrollCallback(window, scroll_callback);
    /* 隐藏光标 */
    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    /* 开启深度测试 */
    glEnable(GL_DEPTH_TEST);

    /* 着色器文件 */
    Shader lightingShader("vs_multiple_lights.txt", "fs_multiple_lights.txt");
    Shader lightCubeShader("vs_light_cube.txt", "fs_light_cube.txt");
    /* 模型文件 */
    Model ourModel("resources/models/obj/Space Station Scene.obj");

    /* 定义顶点坐标数据的数组 */
    float vertices[] =
    {
        // 顶点坐标           // 法向量             //纹理坐标
        // +X面
         0.5f,  0.5f, -0.5f,   1.0f,  0.0f,  0.0f,   1.0f, 1.0f,   // 右上角
         0.5f, -0.5f, -0.5f,   1.0f,  0.0f,  0.0f,   1.0f, 0.0f,   // 右下角
         0.5f, -0.5f,  0.5f,   1.0f,  0.0f,  0.0f,   0.0f, 0.0f,   // 左下角
         0.5f,  0.5f,  0.5f,   1.0f,  0.0f,  0.0f,   0.0f, 1.0f,   // 左上角
         // -X面              
         -0.5f,  0.5f,  0.5f,  -1.0f,  0.0f,  0.0f,   1.0f, 1.0f,   // 右上角
         -0.5f, -0.5f,  0.5f,  -1.0f,  0.0f,  0.0f,   1.0f, 0.0f,   // 右下角
         -0.5f, -0.5f, -0.5f,  -1.0f,  0.0f,  0.0f,   0.0f, 0.0f,   // 左下角
         -0.5f,  0.5f, -0.5f,  -1.0f,  0.0f,  0.0f,   0.0f, 1.0f,   // 左上角
         // +Y面              
          0.5f,  0.5f, -0.5f,   0.0f,  1.0f,  0.0f,   1.0f, 1.0f,   // 右上角
          0.5f,  0.5f,  0.5f,   0.0f,  1.0f,  0.0f,   1.0f, 0.0f,   // 右下角
         -0.5f,  0.5f,  0.5f,   0.0f,  1.0f,  0.0f,   0.0f, 0.0f,   // 左下角
         -0.5f,  0.5f, -0.5f,   0.0f,  1.0f,  0.0f,   0.0f, 1.0f,   // 左上角
         // -Y面              
          0.5f, -0.5f,  0.5f,   0.0f, -1.0f,  0.0f,   1.0f, 1.0f,   // 右上角
          0.5f, -0.5f, -0.5f,   0.0f, -1.0f,  0.0f,   1.0f, 0.0f,   // 右下角
         -0.5f, -0.5f, -0.5f,   0.0f, -1.0f,  0.0f,   0.0f, 0.0f,   // 左下角
         -0.5f, -0.5f,  0.5f,   0.0f, -1.0f,  0.0f,   0.0f, 1.0f,   // 左上角
         // +Z面              
          0.5f,  0.5f,  0.5f,   0.0f,  0.0f,  1.0f,   1.0f, 1.0f,   // 右上角
          0.5f, -0.5f,  0.5f,   0.0f,  0.0f,  1.0f,   1.0f, 0.0f,   // 右下角
         -0.5f, -0.5f,  0.5f,   0.0f,  0.0f,  1.0f,   0.0f, 0.0f,   // 左下角
         -0.5f,  0.5f,  0.5f,   0.0f,  0.0f,  1.0f,   0.0f, 1.0f,   // 左上角
         // -Z面              
         -0.5f,  0.5f, -0.5f,   0.0f,  0.0f, -1.0f,   1.0f, 1.0f,   // 右上角
         -0.5f, -0.5f, -0.5f,   0.0f,  0.0f, -1.0f,   1.0f, 0.0f,   // 右下角
          0.5f, -0.5f, -0.5f,   0.0f,  0.0f, -1.0f,   0.0f, 0.0f,   // 左下角
          0.5f,  0.5f, -0.5f,   0.0f,  0.0f, -1.0f,   0.0f, 1.0f    // 左上角
    };

    /* 定义索引数据的数组 */
    unsigned int indices[] =
    {
        // 注意索引从0开始! 此例的索引(0,1,2,3)就是顶点数组vertices的下标,这样可以由下标代表顶点组合成矩形
        // +X面
         0,  1,  3, // 第一个三角形
         1,  2,  3, // 第二个三角形
         // -X面
          4,  5,  7, // 第一个三角形
          5,  6,  7, // 第二个三角形
          // +Y面
           8,  9, 11, // 第一个三角形
           9, 10, 11, // 第二个三角形
           // -Y面
           12, 13, 15, // 第一个三角形
           13, 14, 15, // 第二个三角形
           // +Z面
           16, 17, 19, // 第一个三角形
           17, 18, 19, // 第二个三角形
           // -Z面
           20, 21, 23, // 第一个三角形
           21, 22, 23, // 第二个三角形
    };

    /* 方块的位置 */
    glm::vec3 cubePositions[] = {
        glm::vec3(0.0f,  0.0f,  0.0f),
        glm::vec3(2.0f,  5.0f, -7.0f),
        glm::vec3(-1.5f, -2.2f, -2.5f),
        glm::vec3(-3.8f, -2.0f, -6.3f),
        glm::vec3(2.4f, -0.4f, -3.5f),
        glm::vec3(-1.7f,  3.0f, -7.5f),
        glm::vec3(1.3f, -2.0f, -2.5f),
        glm::vec3(1.5f,  2.0f, -4.5f),
        glm::vec3(3.5f,  0.2f, -1.5f),
        glm::vec3(-1.3f,  1.0f, -1.5f)
    };

    /* 光源的位置 */
    glm::vec3 pointLightPositions[] = {
        glm::vec3(0.7f,  0.2f,  2.0f),
        glm::vec3(2.3f, -3.3f, -4.0f),
        glm::vec3(-4.0f,  2.0f, -12.0f),
        glm::vec3(0.0f,  0.0f, -3.0f)
    };

    /* 光源的颜色 */
    glm::vec3 pointLightColors[] = {
        glm::vec3(1.0f,  1.0f,  1.0f),
        glm::vec3(1.0f,  0.0f,  0.0f),
        glm::vec3(0.0f,  1.0f,  0.0f),
        glm::vec3(0.0f,  0.0f,  1.0f)
    };

    /* 创建顶点数组对象(cubeVAO)(lightCubeVAO),顶点缓冲对象(VBO)和元素缓冲对象(EBO) */
    unsigned int cubeVAO, lightCubeVAO;
    unsigned int VBO;
    unsigned int EBO;

    glGenVertexArrays(1, &cubeVAO);
    glGenVertexArrays(1, &lightCubeVAO);
    glGenBuffers(1, &VBO);
    glGenBuffers(1, &EBO);

    /* cubeVAO */
    /* 绑定顶点数组对象,顶点缓冲对象和元素缓冲对象 */
    glBindVertexArray(cubeVAO);
    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);

    /* 将顶点数据复制到顶点缓冲对象中 */
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
    /* 将索引数据复制到元素缓冲对象中 */
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

    /* 设置顶点属性指针,指定如何解释顶点数据 */
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0); // 顶点坐标
    /* 启用顶点属性 */
    glEnableVertexAttribArray(0);

    /* 设置顶点属性指针,指定如何解释顶点数据 */
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float))); // 法向量
    /* 启用顶点属性 */
    glEnableVertexAttribArray(1);

    glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
    glEnableVertexAttribArray(2);

    /* lightCubeVAO */
    /* 绑定顶点数组对象,顶点缓冲对象和元素缓冲对象 */
    glBindVertexArray(lightCubeVAO);
    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);

    /* 将顶点数据复制到顶点缓冲对象中 */
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
    /* 将索引数据复制到元素缓冲对象中 */
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

    /* 设置顶点属性指针,指定如何解释顶点数据 */
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0); // 顶点坐标
    /* 启用顶点属性 */
    glEnableVertexAttribArray(0);

    /* 解绑顶点数组对象,顶点缓冲对象和元素缓冲对象 */
    glBindVertexArray(0);
    glBindBuffer(GL_ARRAY_BUFFER, 0);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

    /* 告诉stb_image.h在加载纹理时翻转图像的y轴 */
    stbi_set_flip_vertically_on_load(true);

    /* 材质 */
    unsigned int diffuseMap = loadTexture("resources/images/container2.png");
    unsigned int specularMap = loadTexture("resources/images/container2_specular.png");

    lightingShader.use();
    /* 材质漫反射 */
    lightingShader.setInt("material.diffuse", 0);
    /* 材质镜面反射 */
    lightingShader.setInt("material.specular", 1);

    /* 这是一个循环,只要窗口没有被要求关闭,就会一直执行循环内的代码。 */
    while (!glfwWindowShouldClose(window))
    {
        float currentFrame = static_cast<float>(glfwGetTime());
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;

        /* 这行代码调用processInput函数,用于处理用户输入。 */
        processInput(window);

        /* 这行代码设置清空颜色缓冲区时的颜色。在这个示例中,将颜色设置为浅蓝色。 */
        glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
        /* 这行代码清空颜色缓冲区,以准备进行下一帧的渲染。 */
        glClear(GL_COLOR_BUFFER_BIT);
        /* 清除深度缓冲 */
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        /* 使用着色器程序 */
        lightingShader.use();

        /* 摄影机位置 */
        lightingShader.setVec3("viewPos", camera.Position);

        /* 灯光特性 */
        glm::vec3 lightColor;
        lightColor.x = static_cast<float>(1.0f);
        lightColor.y = static_cast<float>(1.0f);
        lightColor.z = static_cast<float>(1.0f);
        glm::vec3 diffuseColor = lightColor * glm::vec3(0.8f);
        glm::vec3 ambientColor = diffuseColor * glm::vec3(0.2f);

        /* 平行光 */
        glm::vec3 sun_direction(-(float)sin(glfwGetTime()), -(float)cos(glfwGetTime()), 0.0f);
        lightingShader.setVec3("dirLight.direction", sun_direction);

        lightingShader.setVec3("dirLight.ambient", ambientColor);
        lightingShader.setVec3("dirLight.diffuse", diffuseColor);
        lightingShader.setVec3("dirLight.specular", 1.0f, 1.0f, 1.0f);

        /* 点光源 */
        for (int i = 0; i < 4; i++)
        {
            std::stringstream ss;

            ss.str(""); // 清空字符串流
            ss << "pointLights[" << i << "].position";
            std::string position = ss.str();

            ss.str(""); // 清空字符串流
            ss << "pointLights[" << i << "].ambient";
            std::string ambient = ss.str();

            ss.str(""); // 清空字符串流
            ss << "pointLights[" << i << "].diffuse";
            std::string diffuse = ss.str();

            ss.str(""); // 清空字符串流
            ss << "pointLights[" << i << "].specular";
            std::string specular = ss.str();

            ss.str(""); // 清空字符串流
            ss << "pointLights[" << i << "].constant";
            std::string constant = ss.str();

            ss.str(""); // 清空字符串流
            ss << "pointLights[" << i << "].linear";
            std::string linear = ss.str();

            ss.str(""); // 清空字符串流
            ss << "pointLights[" << i << "].quadratic";
            std::string quadratic = ss.str();

            /* 灯光特性 */
            glm::vec3 lightColor = pointLightColors[i];
            glm::vec3 diffuseColor = lightColor * glm::vec3(0.8f);
            glm::vec3 ambientColor = diffuseColor * glm::vec3(0.2f);

            /* 光照属性设置 */
            lightingShader.setVec3(position.c_str(), pointLightPositions[i]);
            lightingShader.setVec3(ambient.c_str(), ambientColor);
            lightingShader.setVec3(diffuse.c_str(), diffuseColor);
            lightingShader.setVec3(specular.c_str(), 1.0f, 1.0f, 1.0f);
            /* 衰减 */
            lightingShader.setFloat(constant.c_str(), 1.0f);
            lightingShader.setFloat(linear.c_str(), 0.09f);
            lightingShader.setFloat(quadratic.c_str(), 0.032f);
        }

        /* 聚光 */
        lightingShader.setVec3("spotLight.position", camera.Position);
        lightingShader.setVec3("spotLight.direction", camera.Front);
        lightingShader.setFloat("spotLight.cutOff", glm::cos(glm::radians(17.0f)));
        lightingShader.setFloat("spotLight.outerCutOff", glm::cos(glm::radians(20.0f)));
        lightingShader.setVec3("spotLight.ambient", ambientColor);
        lightingShader.setVec3("spotLight.diffuse", diffuseColor);
        lightingShader.setVec3("spotLight.specular", 1.0f, 1.0f, 1.0f);
        /* 衰减 */
        lightingShader.setFloat("spotLight.constant", 1.0f);
        lightingShader.setFloat("spotLight.linear", 0.09f);
        lightingShader.setFloat("spotLight.quadratic", 0.032f);

        /* 材质特性 */
        lightingShader.setFloat("material.shininess", 64.0f);

        /* 视角矩阵 */
        glm::mat4 view = glm::mat4(1.0f);
        view = camera.GetViewMatrix();

        /* 透视矩阵 */
        glm::mat4 projection = glm::mat4(1.0f);
        projection = glm::perspective(glm::radians(camera.Zoom), (float)screenWidth / (float)screenHeight, 0.1f, 500.0f);

        /* 将视图矩阵的值传递给对应的uniform */
        lightingShader.setMat4("view", view);
        /* 将投影矩阵的值传递给对应的uniform */
        lightingShader.setMat4("projection", projection);

        /* 模型矩阵 */
        glm::mat4 model;

        /* 绑定顶点数组对象 */
        glBindVertexArray(cubeVAO);
        for (unsigned int i = 0; i < 10; i++)
        {
            /* 计算每个对象的模型矩阵,并在绘制之前将其传递给着色器 */
            model = glm::mat4(1.0f);
            /* 移动 */
            model = glm::translate(model, cubePositions[i]);
            /* 旋转 */
            model = glm::rotate(model, (float)glfwGetTime() * (i + 1) / 5, glm::vec3(-0.5f + ((float)i / 20.0), 1.0f, 0.0f));

            /* 将模型矩阵的值传递给对应的uniform */
            lightingShader.setMat4("model", model);

            /* 绑定漫反射贴图 */
            glActiveTexture(GL_TEXTURE0 + 0);
            glBindTexture(GL_TEXTURE_2D, diffuseMap);
            /* 绑定镜面反射贴图 */
            glActiveTexture(GL_TEXTURE0 + 1);
            glBindTexture(GL_TEXTURE_2D, specularMap);

            /* 绘制矩形 */
            glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_INT, 0);
        }

        model = glm::mat4(1.0f);
        model = glm::translate(model, glm::vec3(0.0f, -7.0f, 0.0f)); // translate it down so it's at the center of the scene
        model = glm::scale(model, glm::vec3(1.0f, 1.0f, 1.0f));	// it's a bit too big for our scene, so scale it down
        lightingShader.setMat4("model", model);
        ourModel.Draw(lightingShader);

        /* 使用着色器程序 */
        lightCubeShader.use();
        /* 将投影矩阵的值传递给对应的uniform */
        lightCubeShader.setMat4("projection", projection);
        /* 将视图矩阵的值传递给对应的uniform */
        lightCubeShader.setMat4("view", view);

        for (unsigned int i = 0; i < 4; i++)
        {
            /* 灯方块颜色 */
            lightCubeShader.setVec3("lightCubeColor", pointLightColors[i]);

            /* 赋值为单位矩阵 */
            model = glm::mat4(1.0f);
            /* 移动 */
            model = glm::translate(model, pointLightPositions[i]);
            /* 缩放 */
            model = glm::scale(model, glm::vec3(0.2f));

            /* 将模型矩阵的值传递给对应的uniform */
            lightCubeShader.setMat4("model", model);

            /* 绑定顶点数组对象 */
            glBindVertexArray(lightCubeVAO);
            /* 绘制矩形 */
            glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_INT, 0);
        }

        /* 这行代码交换前后缓冲区,将当前帧的渲染结果显示到窗口上。 */
        glfwSwapBuffers(window);

        /* 这行代码处理窗口事件,例如键盘输入、鼠标移动等。它会检查是否有事件发生并触发相应的回调函数。 */
        glfwPollEvents();
    }

    /* 删除顶点数组对象 */
    glDeleteVertexArrays(1, &cubeVAO);
    /* 删除顶点缓冲对象 */
    glDeleteBuffers(1, &VBO);
    /* 删除元素缓冲对象 */
    glDeleteBuffers(1, &EBO);
    /* 删除着色器程序 */
    lightingShader.deleteProgram();
    lightCubeShader.deleteProgram();

    /* 这行代码终止GLFW库的运行,释放相关的系统资源。 */
    glfwTerminate();

    /* 程序结束,返回0 */
    return 0;
}

运行结果:

注意!该程序操作方式如下:

WSAD键控制前后左右移动,空格键飞行,shift键下降,
鼠标移动控制视角,鼠标滚轮控制视野缩放。
Esc键退出程序。

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
另外在运行程序时,请打开键盘的英文大写锁定,
否则按shift之后会跳出中文输入法。
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::


如有建议、疑问或任何其他想法,都欢迎在下方的评论区留言!您的反馈对于我改善和扩展本文的内容非常重要。我鼓励各位读者分享经验、提出问题或分享有关OpenGL模型的其他相关信息。无论您是对本文内容有所补充,还是对某个特定主题有深入的了解,您的参与将使这篇博客文章更加丰富和有益。
如果您在学习过程中遇到困难,需要更多的指导或者想要分享您的项目经验,都请不要犹豫,留下您的评论。我将竭诚回复您的问题并与您互动讨论。我们可以一起分享OpenGL模型的技巧、最佳实践和应用案例。
感谢您阅读本博客文章,并期待与您的互动!让我们共同探索OpenGL模型的精彩世界,互相学习和成长!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1459368.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

FlinkCDC详解

1、FlinkCDC是什么 1.1 CDC是什么 CDC是Chanage Data Capture&#xff08;数据变更捕获&#xff09;的简称。其核心原理就是监测并捕获数据库的变动&#xff08;例如增删改&#xff09;&#xff0c;将这些变更按照发生顺序捕获&#xff0c;将捕获到的数据&#xff0c;写入数据…

Vue | (二)Vue组件化编程 | 尚硅谷Vue2.0+Vue3.0全套教程

文章目录 &#x1f4da;模块与组件、模块化与组件化&#x1f4da;非单文件组件&#x1f407;基本使用&#x1f407;关于组件的几个注意点&#x1f407;组件的嵌套 &#x1f4da;单文件组件&#x1f407;一个.vue 文件的组成&#x1f407;实例 学习链接&#xff1a;尚硅谷Vue2.0…

多线程、分布式运行用例

python多线程 threading模块 多线程实例 # -*- coding: utf-8 -*- # Time : 2024/2/7 15:50 # Author : 居里夫人吃橘子 # File : class01.py # Software: PyCharm import threading from time import sleepdef run(name):print(name 该起床了)sleep(2)print(name …

EXCEL使用VBA一键批量转换成PDF

EXCEL使用VBA一键批量转换成PDF 上图是给定转换路径 Sub 按钮1_Click() Dim a(1 To 1000) As String Dim a2 As String Dim myfile As String Dim wb As Workbook a2 Trim(Range("a2"))myfile Dir(a2 & "\" & "*.xls")k 0Do While m…

【LeetCode】树的BFS(层序遍历)精选6题

目录 1. N 叉树的层序遍历&#xff08;中等&#xff09; 2. 二叉树的锯齿形层序遍历&#xff08;中等&#xff09; 3. 二叉树的最大宽度&#xff08;中等&#xff09; 4. 在每个树行中找最大值&#xff08;中等&#xff09; 5. 找树左下角的值&#xff08;中等&#xff09…

2024.2.20

使用多进程完成两个文件的拷贝&#xff0c;父进程拷贝前一半&#xff0c;子进程拷贝后一半&#xff0c;父进程回收子进程的资源 #include<myhead.h> int main(int argc, const char *argv[]) {char str[100]"";puts("please input str:");//从终端读…

手动实现new操作符

<script>//前置知识// 每一个函数在创建之初就会有一个prototype属性&#xff0c;这个属性指向函数的原型对象// function abc(){// }// abc.prototype--> {constructor: f}// 在JS中任意的对象都有内置的属性叫做[[prototype]]这是一个私有属性&#xff0c;这个私有属…

GEE数据集——美国两个主要石油和天然气(OG)产区内与石油和天然气(OG)相关的基础设施的位置

该数据集提供了美国两个主要石油和天然气&#xff08;O&G&#xff09;产区内与石油和天然气&#xff08;O&G&#xff09;相关的基础设施的位置&#xff1a;德克萨斯州西部和新墨西哥州南部二叠纪盆地的特拉华子盆地以及犹他州的乌因塔盆地。前言 – 人工智能教程 石油…

deep learning 代码笔记

1. pandas数据读取和预处理 # import pandas and load dataset import pandas as pd names [Sex, Length, Diameter, Height, Whole_weight, Shucked_weight, Viscera_weight, Shell_weight, Rings] data pd.read_csv(data_file, headerNone, namesnames) print(data) …

【前沿】头戴式光场显示技术研究进展

摘要&#xff1a;光场显示器旨在通过重建三维场景在不同方向发出的几何光线来渲染三维场景的视觉感知&#xff0c;从而为人的视觉系统提供自然舒适的视觉体验&#xff0c;解决传统平面立体三维显示器中的聚散调节冲突问题。近年来&#xff0c;多种光场显示方法被尝试应用到头戴…

沁恒CH32V30X学习笔记11---使用外部时钟模式2采集脉冲计数

使用外部时钟模式2采集脉冲计数 使用外部触发模式 2 能在外部时钟引脚输入的每一个上升沿或下降沿计数。将 ECE 位置位时,将使用外部时钟源模式 2。使用外部时钟源模式 2 时,ETRF 被选定为 CK_PSC。ETR 引脚经过可选的反相器(ETP),分频器(ETPS)后成为 ETRP,再经过滤波…

Stable Diffusion——stable diffusion基础原理详解与安装秋叶整合包进行出图测试

前言 在2022年&#xff0c;人工智能创作内容&#xff08;AIGC&#xff09;成为了AI领域的热门话题之一。在ChatGPT问世之前&#xff0c;AI绘画以其独特的创意和便捷的创作工具迅速走红&#xff0c;引起了广泛关注。随着一系列以Stable Diffusion、Midjourney、NovelAI等为代表…

【Linux权限】 Linux权限管理 | 粘滞位

文章目录 Linux权限管理什么是权限 ❓&#x1f4a6; 文件访问者的分类(人)&#x1f4a6; 文件类型和访问权限(事物属性) &#x1f4a6; 文件访问权限的相关设置方法目录的权限 粘滞位 Linux权限管理 什么是权限 ❓ 权限本质上是决定某件事情&#xff0c;某人能否做。 Linux下…

【GameFramework框架内置模块】2、数据节点(Data Node)

推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享简书地址 大家好&#xff0c;我是佛系工程师☆恬静的小魔龙☆&#xff0c;不定时更新Unity开发技巧&#xff0c;觉得有用记得一键三连哦。 一、前言 【GameFramework框架】系列教程目录&#xff1a; https://blog.csdn.net/q7…

AMD FPGA设计优化宝典笔记(1)触发器

高亚军老师的这本书《AMD FPGA设计优化宝典》&#xff0c;他主要讲了两个东西&#xff1a; 第一个东西是代码的良好风格&#xff1b; 第二个是设计收敛等的本质。 这个书的结构是一个总论&#xff0c;加上另外的9个优化&#xff0c;包含的有&#xff1a;时钟网络、组合逻辑、触…

从starrocks安装说起和Oracle的OLAP殊途同归

StarRocks是一款分析型数据库&#xff08;他的定语也很多&#xff0c;分布式存算分离等等&#xff09;。作为数据库他的运行和维护迟早也是落在我这里的。对于做数据库的人都知道什么是交易型数据库&#xff0c;什么是分析型数据库。以及什么是事务分析混合型数据库。但是对于非…

UE5 C++ 静态加载资源和类

一.上篇文章创建组件并绑定之后 在Actor中加载初始化了组件&#xff0c;现在在组件中赋值。使用static ConstructorHelpers::FObjectFinder<T>TempName(TEXT("Copy Reference"))&#xff1b;再用TempName.Object //静态加载资源static ConstructorHelpers::FOb…

2024.2.10 HCIA - Big Data笔记

1. 大数据发展趋势与鲲鹏大数据大数据时代大数据的应用领域企业所面临的挑战和机遇华为鲲鹏解决方案2. HDFS分布式文件系统和ZooKeeperHDFS分布式文件系统HDFS概述HDFS相关概念HDFS体系架构HDFS关键特性HDFS数据读写流程ZooKeeper分布式协调服务ZooKeeper概述ZooKeeper体系结构…

拿捏c语言指针(下)

前言 此篇讲解的主要是函数与指针的那些事~ 书接上回 拿捏c语言指针&#xff08;上&#xff09;和 拿捏c语言指针&#xff08;中&#xff09; ​​​​​​没有看的小伙伴要抓紧喽~ 欢迎关注​​个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗~ 如有错误&#x…

GNU 图像处理程序 (GIMP) - 颜色拾取工具

GNU 图像处理程序 [GIMP] - 颜色拾取工具 References 选择 颜色拾取工具 在图片上选取要拾取位置的颜色&#xff0c;前景颜色会跟着改变 选择画笔工具&#xff0c;在图片上绘制的是选取的颜色 工具选项 -> 设置背景颜色&#xff0c;在图片上拾取为背景颜色 使用 橡皮工具&am…