数据分析案例-2023年TOP100国外电影数据可视化

news2025/3/10 21:40:12

 

🤵‍♂️ 个人主页:@艾派森的个人主页

✍🏻作者简介:Python学习者
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+


目录

1.项目背景

2.数据集介绍

3.技术工具

4.导入数据

5.数据可视化

文末推荐与福利


1.项目背景

        随着全球化的深入发展,电影作为一种文化表达和艺术形式,逐渐超越了国界,成为世界各地观众共同欣赏的对象。2023年TOP100国外电影榜单的发布,正是这一发展趋势的体现。为了更好地理解这一现象,我们决定对这100部电影进行数据可视化分析,以期揭示其背后的文化、市场和艺术特征。

        近年来,电影产业的数字化和网络化带来了海量的数据资源,这为我们的研究提供了可能。通过数据挖掘和分析,我们可以了解哪些类型的电影更受欢迎,哪些地区或国家的电影在全球范围内有更大的影响力,以及观众的喜好和行为模式等。

        电影不仅仅是一种娱乐方式,它还是一个反映社会现象、传达价值观和塑造文化认同的重要工具。通过研究TOP100国外电影,我们可以深入了解不同文化背景下的故事、主题和表达方式,从而增进国际间的文化交流和理解。

        此外,电影市场的竞争也日益激烈。通过数据可视化,我们可以分析电影的票房、口碑和影响力之间的关系,为电影产业的决策者提供有价值的参考信息,以促进电影产业的健康和可持续发展。

        总之,2023年TOP100国外电影数据可视化研究旨在利用现代数据分析技术,深入挖掘电影数据的价值,理解电影作为一种全球性文化的现象,增进国际文化交流,并为电影产业的未来发展提供决策支持。

2.数据集介绍

        数据集来源与Kaggle,原始数据集为2023年国外最佳的前100部电影数据,共有如下变量:

列名描述
name电影的标题。
rating给电影的评级。
votes电影获得的票数。
runtime电影的持续时间或运行时间。
genre电影所属的流派。
description电影的简要概述或描述。

3.技术工具

Python版本:3.9

代码编辑器:jupyter notebook

4.导入数据

导入第三方库和数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import warnings
warnings.filterwarnings('ignore')
sns.set_style('darkgrid')
plt.style.use('ggplot')

df = pd.read_csv('moviesdataset_2023.csv')
df.head()

查看数据大小

查看数据基本信息

# 数据类型转换
df['rating'] = pd.to_numeric(df['rating'], errors='coerce')
df['votes'] = pd.to_numeric(df['votes'].str.replace(',', ''), errors='coerce')
df['runtime'] = pd.to_numeric(df['runtime'].str.replace(' min', ''), errors='coerce')

查看描述性统计

5.数据可视化

import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10, 6))
sns.histplot(df['rating'].dropna(), bins=10, kde=True, color='skyblue')
plt.title('Distribution of Ratings')
plt.xlabel('Rating')
plt.ylabel('Frequency')
plt.show()

plt.figure(figsize=(10, 6))
sns.scatterplot(x='rating', y='votes', data=df, color='coral')
plt.title('Relationship between Rating and Votes')
plt.xlabel('Rating')
plt.ylabel('Votes')
plt.show()

genres_count = df['genre'].explode().value_counts()
plt.figure(figsize=(12, 8))
genres_count.plot(kind='bar', color='salmon')
plt.title('Movie Genres Count')
plt.xlabel('Genres')
plt.ylabel('Count')
plt.xticks(rotation=45, ha='right')
plt.show()

plt.figure(figsize=(10, 6))
sns.histplot(df['runtime'].dropna(), bins=15, kde=True, color='lightgreen')
plt.title('Distribution of Runtime')
plt.xlabel('Runtime (minutes)')
plt.ylabel('Frequency')
plt.show()

plt.figure(figsize=(12, 8))
sns.pairplot(df[['rating', 'votes', 'runtime']])
plt.suptitle('Pair Plot for Numerical Columns', y=1.02)
plt.show()

plt.figure(figsize=(14, 8))
sns.countplot(y='genre', data=df, order=df['genre'].explode().value_counts().index, palette='viridis')
plt.title('Count of Movies in Each Genre')
plt.xlabel('Count')
plt.ylabel('Genres')
plt.show()

# 相关系数热力图
plt.figure(figsize=(10, 8))
correlation_matrix = df[['rating', 'votes', 'runtime']].corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=.5)
plt.title('Correlation Heatmap')
plt.show()

plt.figure(figsize=(14, 8))
sns.boxplot(x='runtime', y='genre', data=df, palette='Set2')
plt.title('Box Plot of Runtime Across Genres')
plt.xlabel('Runtime (minutes)')
plt.ylabel('Genres')
plt.show()

# 电影描述词云图
from wordcloud import WordCloud
# 将所有描述组合成一个字符串
all_descriptions = ' '.join(df['description'])
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(all_descriptions)
plt.figure(figsize=(12, 6))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('Word Cloud for Movie Descriptions')
plt.show()

average_rating_by_genre = df.groupby('genre')['rating'].mean().sort_values(ascending=False)
plt.figure(figsize=(14, 8))
sns.barplot(x=average_rating_by_genre.values, y=average_rating_by_genre.index, palette='coolwarm')
plt.title('Average Rating Across Genres')
plt.xlabel('Average Rating')
plt.ylabel('Genres')
plt.show()

文末推荐与福利

《Excel函数与公式应用大全》免费包邮送出3本!

内容简介:      

        本书以 Excel 2021 为蓝本,全面系统地介绍了 Excel 365 & Excel 2021 函数与公式的技术原理、应用技巧与实战案例。内容包括函数与公式基础,文本处理、查找引用、统计求和、Web 类函数、宏表函数、自定义函数、数据库函数等常用函数的应用,以及数组公式、动态数组、多维引用等。

        本书采用循序渐进的方式,由易到难地介绍各个知识点,适合各个水平的 Excel 用户,既可作为初学者的入门指南,又可作为中、高级用户的参考手册。

编辑推荐:     

经典:Excel Home团队策划,多位微软全球MVP通力打造。

升级:上一版长期雄踞Excel函数类图书销量前列,《Excel 2019函数与公式应用大全》重磅升级版。

全面:详尽而又系统地介绍了Excel函数与公式的核心技术。

实战 精选Excel Home的海量案例,零距离接触Excel专家级使用方法。

深入:对一些常常困扰学习者的功能深入揭示背后的原理,让读者知其然,还能知其所以然。

揭秘:独家讲授Excel多项绝密应用,披露Excel专家多年研究成果!

资源:提供视频教学资源及书中相关案例文件,供读者参考练习、快速上手。

  • 抽奖方式:评论区随机抽取3位小伙伴免费送出!
  • 参与方式:关注博主、点赞、收藏、评论区评论“人生苦短,拒绝内卷!”(切记要点赞+收藏,否则抽奖无效,每个人最多评论三次!
  • 活动截止时间:2024-2-23 20:00:00
  • 当当:http://product.dangdang.com/29678919.html

    京东:https://item.jd.com/14360776.html

 名单公布时间:2024-2-23 21:00:00 

 

资料获取,更多粉丝福利,关注下方公众号获取

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1458888.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C/C++ BM11 链表相加(二)

文章目录 前言题目解决方案一1.1 思路阐述1.2 源码 总结 前言 这道题使用链表来实现加法运算,主要是涉及到数据对位以及加法进位的处理。 题目 假设链表中每一个节点的值都在 0 - 9 之间,那么链表整体就可以代表一个整数。 给定两个这种链表&#xff0…

【Docker】集群容器监控和统计 Portainer基本用法

Portainer是一款轻量级的应用,它提供了图形化界面,用川于方便地管理Docker环境,包括单机环境和集群环境。 主要功能:实现集群容器的监控和统计 下载安装 官网:https://www.portainer.io 文档:https://do…

短剧App:引领移动娱乐新潮流

随着科技的飞速发展,人们对于娱乐的需求也在不断变化。近年来,短剧App逐渐崭露头角,成为了移动娱乐的新宠。本文将探讨短剧App的发展趋势、市场现状、用户需求以及开发过程中的关键因素。 一、短剧App的发展趋势 短剧App以其简短、精悍的特…

无可执行权限加载 ShellCode

简单来说就是可以直接加载可读内存中的加密 ShellCode,不需要解密,不需要申请新的内存,也不需要改可执行权限。应用不仅仅在上线,上线后的各种功能都可以通过 ShellCode 实现 1.查杀点 现状 在加载 ShellCode、使用 BOF 等时候…

Mysql如何优化数据查询方案

mysql做读写分离 读写分离是提高mysql并发的首选方案。 Mysql主从复制的原理 mysql的主从复制依赖于binlog,也就是记录mysql上的所有变化并以二进制的形式保存在磁盘上,复制的过程就是将binlog中的数据从主库传输到从库上。 主从复制过程详细分为3个阶段…

《英伟达-本地AI》--NVIDIA Chat with RTX-本机部署

阿丹: 突然发现公司给配置的电脑是NVIDIA RTX 4060的显卡,这不搞一搞本地部署的大模型玩一玩??? 从0-》1记录一下本地部署的全过程。 本地模型下载地址: Build a Custom LLM with Chat With RTX | NVIDIA…

Rocky 8.9 Kubespray v2.24.0 在线部署 kubernetes v1.28.6 集群

文章目录 1. 简介2. 预备条件3. 基础配置3.1 配置hostname3.2 配置互信 4. 配置部署环境4.1 在线安装docker4.2 启动容器 kubespray4.3 编写 inventory.ini4.4 关闭防火墙、swap、selinux4.5 配置内核模块 5. 部署 1. 简介 kubespray​ 是一个用于部署和管理 Kubernetes 集群的…

vulhub中Apache Log4j Server 反序列化命令执行漏洞复现(CVE-2017-5645)

Apache Log4j是一个用于Java的日志记录库,其支持启动远程日志服务器。Apache Log4j 2.8.2之前的2.x版本中存在安全漏洞。攻击者可利用该漏洞执行任意代码。 1.我们使用ysoserial生成payload,然后直接发送给your-ip:4712端口即可。 java -jar ysoserial-…

111期_C++_2024年1月份作业博客_选择题错题总结

一、野指针问题:在定义的时候没有初始化,就不能能用scanf 或 printf 二、一个变量出现在表达式的两边作为两个不同的操作数, 并且其中一个操作数带有,此时表达式出现歧义 三、两端出栈问题: 错因:未理解题…

VirtualBox虚拟机磁盘VDI文件压缩瘦身

文章目录 问题现象虚拟机文件目录结构处理方法清除宿主机文件和虚拟机快照虚拟机磁盘瘦身 问题现象 2月7日下午四点多,我已经休假了,某县的客户运维方打来电话,说平台挂了,无法访问 客户是提供的一台Windows server2016机器部署平…

OpenCV边缘检测与视频读写

原理 OpenCV中的边缘检测原理主要基于图像梯度的计算,包括一阶梯度和二阶梯度。 一阶梯度:它反映了图像亮度变化的速度。Sobel算法就是一种以一阶梯度为基础的边缘检测算法。它通过计算图像在水平和垂直方向上的梯度来检测边缘。这种方法简单有效&…

[OpenAI]继ChatGPT后发布的Sora模型解析与体验通道

前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家:https://www.captainbed.cn/z ChatGPT体验地址 文章目录 前言OpenAI体验通道Spacetime Latent Patches 潜变量时空碎片, 建构视觉语言系统…

C++11---(2)

目录 一、新增容器 1.1、array 1.2、forward_list 1.3、unordered系列 二、右值引用和移动语义 2.1、什么是左值,什么是左值引用 2.2、什么是右值,什么是右值引用 2.3、左值引用和右值引用比较 2.4、右值引用使用场景和意义 2.5、右值引用引用…

利用ChatGPT提升测试工作效率——测试工程师的新利器

1、前言 随着ChatGPT的爆火,各个行业开始尝试利用ChatGPT来提升工作效率。其中,测试工程师们也开始探索如何应用ChatGPT来加强测试工作。在本文中,我们将从测试工程师的角度出发,探讨ChatGPT在测试工作中的应用。通过ChatGPT&…

如何使用Docker搭建YesPlayMusic网易云音乐播放器并发布至公网访问

文章目录 1. 安装Docker2. 本地安装部署YesPlayMusic3. 安装cpolar内网穿透4. 固定YesPlayMusic公网地址 本篇文章讲解如何使用Docker搭建YesPlayMusic网易云音乐播放器,并且结合cpolar内网穿透实现公网访问音乐播放器。 YesPlayMusic是一款优秀的个人音乐播放器&am…

阿里云服务器镜像是什么?如何选择镜像?

阿里云服务器镜像怎么选择?云服务器操作系统镜像分为Linux和Windows两大类,Linux可以选择Alibaba Cloud Linux,Windows可以选择Windows Server 2022数据中心版64位中文版,阿里云服务器网aliyunfuwuqi.com来详细说下阿里云服务器操…

社区店经营全攻略:如何选址、运营并打造火爆生意?

随着电商的兴起,实体店的经营面临着越来越多的挑战。然而,社区店依然具有独特的优势,如便捷的地理位置、与消费者的紧密互动等。 作为在社区店开鲜奶吧5年的创业者,我深有感触,那么这篇文章将为你提供最有价值的干货信…

SpringBoot+WebSocket实现即时通讯(四)

前言 紧接着上文《SpringBootWebSocket实现即时通讯(三)》 本博客姊妹篇 SpringBootWebSocket实现即时通讯(一)SpringBootWebSocket实现即时通讯(二)SpringBootWebSocket实现即时通讯(三&…

代码随想录算法训练营第十八天|235.二叉搜索树的最近公共祖先,701.二叉搜索树中的插入操作,450.删除二叉搜索树节点

235.二叉搜索树的最近公共祖先 701.二叉搜索树中的插入操作 450.删除二叉搜索树节点 235.二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近…

函数指针概念的理解要点

1:理解函数 函数即为代码,代码就应该放在内存中,是内存,就有地址 void CmpFun(int a,int b){if(a>b)printf("最大的数为%d",a);elseprintf("最大的数为%d",b);}int main(){printf("输出函数CmpFu…