【小呆的力学笔记】弹塑性力学的初步认知四:简单应力状态下的应力应变关系

news2025/1/17 21:48:08

文章目录

      • 2. 简单应力状态下的应力应变关系
        • 2.1 简单拉伸的应力应变关系
        • 2.2 真实应力应变关系
        • 2.3 应力-应变关系简化模型

2. 简单应力状态下的应力应变关系

我们在高中就学过,弹簧拉伸力和变形量成比例,对于一般的金属材料,在一定载荷以内这种结论也是成立的,这种情况称之为弹性。在下面的材料力学单向拉伸试验的结果中,我们可以看到材料先发生弹性变形,超过一定极限后产生塑性变形。

2.1 简单拉伸的应力应变关系

材料拉伸试样如下图1所示,在试验时在试样两端夹持,施加载荷,试验在载荷作用下会伸长,记录相应时刻的载荷-位移数据,并以此绘制曲线如下图2所示。
在这里插入图片描述
图 1 拉伸试样 图1 \quad拉伸试样 1拉伸试样
在这里插入图片描述
图 2 载荷 − 变形曲线 图2 \quad载荷-变形曲线 2载荷变形曲线
但一般会进行以下变换
σ = F A 0 , ε = Δ l 0 (1) \sigma=\frac{F}{A_0}, \varepsilon=\frac{\Delta}{l_0}\tag{1} σ=A0F,ε=l0Δ(1)
那么可以将载荷-变形曲线变换成 σ − ε \sigma-\varepsilon σε应力应变曲线,如下图3。
在这里插入图片描述
图 3 σ − ε 曲线 图3\quad \sigma-\varepsilon曲线 3σε曲线
其中A点称为上屈服点,B为下屈服点,材料在两者之间呈现流动状态,应力不发生显著变化只增加应变,一般上屈服点和下屈服点区别不大(此屈服流动的现象一般在低碳钢中存在,合金钢等往往没有明显的特征),用 σ s \sigma_s σs来代替,称材料的屈服强度。材料在 σ s \sigma_s σs以下呈现弹性变形,也就是载荷去除之后变形能够完全恢复,且应力和应变成比例。同时,金属材料压缩的应力应变曲线基本上与拉伸的应力应变曲线接近。

有一些金属可能没有上下屈服流动阶段,如下图4。

在应力超过弹性极限后,会产生塑性应变 ε p \varepsilon^p εp,缓慢卸去载荷,变形也不能完全恢复(见图4中 ε p \varepsilon^p εp),这种现象成为屈服。同时卸载曲线也是线性的,并且斜率和刚开始的弹性段一样,直到反向屈服。

图4中A’为材料的压缩屈服点,假设A与A’对称(即压缩屈服等于拉伸屈服),左图为多晶材料,多晶材料反向屈服点M’一般绝对值小于A’,称为包晶格效应(Bauschingerx effect),即在拉伸方向的强化导致压缩方向的弱化,这种效应在后文中还会应用(就是随动强化模型)。

右图为单晶材料,材料反向屈服点M’一般绝对值大于A’,即在拉伸方向的强化导致压缩方向的同样的强化,这种效应在后文中还会应用(就是等向强化模型)。
在这里插入图片描述
图 4 加载 / 卸载应力应变曲线 图4\quad 加载/卸载应力应变曲线 4加载/卸载应力应变曲线

2.2 真实应力应变关系

在图3中,在应力达到最高点C以前,应力和应变一同增加,到达C点后应变增加,应力却下降了。事实上,在C点前由于泊松比的存在,变形前试样的截面随着载荷增加,会慢慢减小,但是在随着变形的继续,某一时刻横截面会较迅速的减小,这种现象称为颈缩(也称塑性失稳),由于截面的迅速缩小,试样的承载能力随之下降,相应的名义应力也下降。因此实际上,名义应力在变形量小的时候跟试样的真实应力差别不大,但是在颈缩时,名义应力和真实应力较大差别。

按照定义,定义真实应力 σ ~ \widetilde{\sigma} σ 如下
σ ~ = P A (2) \widetilde{\sigma}=\frac{P}{A}\tag{2} σ =AP(2)
其中 A A A为试样瞬时截面, P P P为试样瞬时载荷。

瞬时的应变增量 d ε ~ d\widetilde{\varepsilon} dε 如下所示
d ε ~ = d l ′ l ′ (3) d\widetilde{\varepsilon}=\frac{dl'}{l'}\tag{3} dε =ldl(3)
其中 l ′ l' l为试样瞬时长度, d l ′ dl' dl为试样瞬时伸长量。

那么真实应变 ε ~ \widetilde{\varepsilon} ε
ε ~ = ∫ l 0 l d l ′ l ′ = ln ⁡ ( l ′ ) ∣ l 0 l = ln ⁡ ( l l 0 ) = ln ⁡ ( l − l 0 + l 0 l 0 ) = ln ⁡ ( 1 + ε ) (4) \widetilde{\varepsilon}=\int_{l_0}^{l}\frac{dl'}{l'}=\ln(l')|_{l_0}^{l}=\ln(\frac{l}{l_0})=\ln(\frac{l-l_0+l_0}{l_0})=\ln(1+\varepsilon)\tag{4} ε =l0lldl=ln(l)l0l=ln(l0l)=ln(l0ll0+l0)=ln(1+ε)(4)

在材料进入塑性阶段,材料表现出塑性流动的特征,这里需要引用材料几乎不可压缩的假设,因此有

A 0 l 0 = A l (5) A_0l_0=Al\tag{5} A0l0=Al(5)

那么真实应力变 σ ~ \widetilde{\sigma} σ
σ ~ = P A = P A 0 ⋅ A 0 A = P A 0 ⋅ l l 0 = σ e ε ~ = σ ( 1 + ε ) (6) \widetilde{\sigma}=\frac{P}{A}=\frac{P}{A_0}\cdot\frac{A_0}{A}=\frac{P}{A_0}\cdot\frac{l}{l_0}=\sigma e^{\widetilde{\varepsilon}}=\sigma (1+\varepsilon)\tag{6} σ =AP=A0PAA0=A0Pl0l=σeε =σ(1+ε)(6)

在图5右侧曲线中C为名义应力达到最大值,在此时,有
d σ d ε = 0 (7) \frac{d\sigma}{d\varepsilon}=0\tag{7} dεdσ=0(7)

在图5右侧曲线中C为名义应力达到最大值对应的真实应力点C’’,其中真实应力有式(6),那么有
d σ ~ d ε = σ (8) \frac{d\widetilde{\sigma}}{d\varepsilon}=\sigma\tag{8} dεdσ =σ(8)

在图5左侧曲线中C为名义应力达到最大值对应的真实应力点C’,真实应力和真实应变应满足的条件如下
d σ ~ d ε ~ = ( d σ d ε ⋅ d ε d ε ~ ) e ε ~ + σ e ε ~ = σ e ε ~ = σ ~ (9) \frac{d\widetilde{\sigma}}{d\widetilde{\varepsilon}}=(\frac{d\sigma}{d\varepsilon}\cdot\frac{d\varepsilon}{d\widetilde{\varepsilon}})e^{\widetilde{\varepsilon}}+\sigma e^{\widetilde{\varepsilon}}=\sigma e^{\widetilde{\varepsilon}}=\widetilde{\sigma}\tag{9} dε dσ =(dεdσdε dε)eε +σeε =σeε =σ (9)

在这里插入图片描述
图 5 应力应变曲线 图5\quad 应力应变曲线 5应力应变曲线

2.3 应力-应变关系简化模型

在理论分析中,常常采用简化的应力应变模型来分析具体问题(实际工程中也多有应用)。

简化模型一:理想弹塑性模型

如下图6所示,那么应力应变关系可以写为
σ = { E ε , ε ≤ ε s σ s s i g n ε , ε > ε s (10) \sigma=\begin{cases}E\varepsilon &\quad,\quad \varepsilon\le\varepsilon_s\\ \sigma_s sign \varepsilon &\quad,\quad \varepsilon\gt\varepsilon_s \end{cases}\tag{10} σ={σssignε,εεs,ε>εs(10)

在这里插入图片描述
图 6 理想弹塑性模型 图6\quad 理想弹塑性模型 6理想弹塑性模型

简化模型二:线性强化弹塑性模型

如下图7所示,那么应力应变关系可以写为

σ = { E ε , ε ≤ ε s σ s + E ’ ( ε − ε s ) , ε > ε s (11) \sigma=\begin{cases}E\varepsilon &\quad,\quad \varepsilon\le\varepsilon_s\\ \sigma_s +E’( \varepsilon-\varepsilon_s) &\quad,\quad \varepsilon\gt\varepsilon_s \end{cases}\tag{11} σ={σs+E(εεs),εεs,ε>εs(11)

在这里插入图片描述
图 7 线性强化弹塑性模型 图7\quad 线性强化弹塑性模型 7线性强化弹塑性模型

当然,上式当进入塑性后,还可以写成另外一种形式,如下所示
ε = ε e + ε p (12) \varepsilon=\varepsilon^e+\varepsilon^p\tag{12} ε=εe+εp(12)
σ = σ s + h ε p (13) \sigma=\sigma_s+h\varepsilon^p\tag{13} σ=σs+hεp(13)
可以通过下图来确定h,下图为应力-塑性应变图,由图7可知
E ′ = d σ d ε (14) E'=\frac{d\sigma}{d\varepsilon}\tag{14} E=dεdσ(14)
同时由图8可知
h = d σ d ε p = d σ d ε − d ε e = 1 d ε d σ − d ε e d σ = 1 1 E ′ − 1 E (15) h=\frac{d\sigma}{d\varepsilon^p}=\frac{d\sigma}{d\varepsilon-d\varepsilon^e}=\frac{1}{\frac{d\varepsilon}{d\sigma}-\frac{d\varepsilon^e}{d\sigma}}=\frac{1}{\frac{1}{E'}-\frac{1}{E}}\tag{15} h=dεpdσ=dεdεedσ=dσdεdσdεe1=E1E11(15)
代入(13),那么有
ε p = σ − σ s h = ( σ − σ s ) ( 1 E ′ − 1 E ) \varepsilon^p=\frac{\sigma-\sigma_s}{h}=(\sigma-\sigma_s)(\frac{1}{E'}-\frac{1}{E}) εp=hσσs=(σσs)(E1E1)
那么相应的式(11)可以改写为
ε = ε e + ε p = σ E + ( σ − σ s ) ( 1 E ′ − 1 E ) (16) \varepsilon=\varepsilon^e+\varepsilon^p=\frac{\sigma}{E} +( \sigma-\sigma_s)(\frac{1}{E'}-\frac{1}{E})\tag{16} ε=εe+εp=Eσ+(σσs)(E1E1)(16)

同时,有
0 < 1 h = 1 E ′ − 1 E < 1 E ′ (17) 0\lt\frac{1}{h}=\frac{1}{E'}-\frac{1}{E}\lt\frac{1}{E'}\tag{17} 0<h1=E1E1<E1(17)
那么有以下结论,
h > E ′ (18) h\gt E'\tag{18} h>E(18)
而其物理意义如下图
在这里插入图片描述
图 8 h 的物理意义(在 σ − ε p 图中) 图8\quad h的物理意义(在\sigma-\varepsilon^p 图中) 8h的物理意义(在σεp图中)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1458567.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

leetcode判断字母异位词

代码 public static boolean isAnagram(String s,String t){char[] x s.toCharArray();char[] y t.toCharArray();Arrays.sort(x);Arrays.sort(y);boolean val Arrays.equals(x, y);return val;} 测试如下 public static void main(String[] args) {String s "anag…

PCIE Retimer

1 Retimers retimer是一种PCIE的扩展设备&#xff0c;用于长距离高效地传输数据&#xff0c;起到一种中继器的作用。PCIe扫盲——ReTimer和ReDriver简介  在EP和RC中间最多允许两级retimers级联&#xff0c;其可以分为纯模拟类&#xff0c;它是一种对物理层协议无关的芯片&…

STM32 USART详细解读(理论知识)

文章目录 前言一、同步传输和异步传输二、UART协议三、UART硬件结构1.波特率&#xff0c;数据位&#xff0c;校验位&#xff0c;停止位设置2.数据发送流程3.数据接收流程4.中断控制 总结 前言 本篇文章来给大家讲解一下STM32中的USART&#xff0c;USART是STM32中非常重要的一个…

沁恒CH32V30X学习笔记09---使用TIM 外部时钟1模式实现硬件计数

TIM 外部时钟1使用 定时器时钟 通过框图可知;外部时钟1模式下仅仅只有通道1 和通道2 可以输入脉冲 简单示例教程 void TIM1_ETRClockMode1_Init(void) {RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);TIM_CounterModeConfig(TIM1, TIM_CounterMode_Up)

人工智能|机器学习——基于机器学习的舌苔检测

代码下载&#xff1a; 基于深度学习的舌苔检测毕设留档.zip资源-CSDN文库 1 研究背景 1.1.研究背景与意义 目前随着人们生活水平的不断提高&#xff0c;对于中医主张的理念越来越认可&#xff0c;对中医的需求也越来越多。在诊断中&#xff0c;中医通过观察人的舌头的舌质、苔…

Vue的个人笔记

Vue学习小tips ctrl s ----> 运行 alt b <scrip> 链接 <script src"https://cdn.jsdelivr.net/npm/vue2.7.16/dist/vue.js"></script> 插值表达式 指令

unplugin-vue-components解决命名冲突

我们在vue项目中通常会利用unplugin-vue-components插件进行自定义组件的自动引入 注&#xff1a;如果不知道怎么配置unplugin-vue-components插件&#xff0c;欢迎看我整理的这篇&#xff1a; vue3项目配置按需自动引入自定义组件unplugin-vue-components 当出现同名文件时&a…

详解平面点云面积计算

部分代码展示&#xff1a; &#xff08;1&#xff09;利用格网法计算面积&#xff1a; //&#xff08;2&#xff09;测试使用格网法计算平面点云面积 void main() {char *inputpath "D:\\testdata\\data.txt";vector<pcl::PointXYZ> points ReadPointXYZIn…

TRS 2024 论文阅读 | 基于点云处理和点Transformer网络的人体活动连续识别

无线感知/雷达成像部分最新工作<持续更新>: 链接地址 注1:本文系“无线感知论文速递”系列之一,致力于简洁清晰完整地介绍、解读无线感知领域最新的顶会/顶刊论文(包括但不限于 Nature/Science及其子刊; MobiCom, Sigcom, MobiSys, NSDI, SenSys, Ubicomp; JSAC, 雷达学…

百年明牌门业入围2024中国别墅门十大品牌榜单

一年一度的中国别墅门十大品牌网络评选活动圆满的落下帷幕。来自浙江的“百年明牌”凭借自身优异的产品品质&#xff0c;以及极佳的市场口碑&#xff0c;强势入围2024中国别墅门十大品牌榜单。 武义誉鑫安防科技有限公司坐落于素有“中国五金之都”和“中国门都”之称的永康市&…

阿里云幻兽帕鲁Windows 服务器怎么下载存档?

阿里云幻兽帕鲁Windows 服务器怎么下载存档&#xff1f;通过远程连接window服务器桌面的方式。 远程连接到阿里云的 Windows 服务器后&#xff0c;可以将压缩后的存档文件&#xff0c;拖动到 workbench\Download 目录后&#xff0c;就会触发浏览器的文件下载&#xff0c;然后将…

电子防潮柜如何应对潮湿问题?

智能化时代的到来&#xff0c;让电子产品成为人们生活中的必需品&#xff0c;电子产品对存储环境的要求非常高。潮湿会产生发霉、生锈、氧化、腐蚀、变形等现象&#xff0c;缩短了电子产品的寿命。绝大部分电子产品都要求在清洁低湿干燥的环境中存放&#xff0c;环境中的温湿度…

企业微信会话存档是什么?

在当今数字化时代&#xff0c;企业对于信息管理和数据保存的需求日益增强。 企业微信&#xff0c;作为一款专为企业打造的即时通讯工具&#xff0c;不仅提供了高效的内部沟通机制&#xff0c;还通过其会话存档功能&#xff0c;为企业的数据安全和合规性提供了有力保障。 那么&…

代码随想录算法训练营29期|day55 任务以及具体安排

第九章 动态规划part12 309.最佳买卖股票时机含冷冻期 class Solution {public int maxProfit(int[] prices) {//0代表持股票&#xff0c;1代表保持卖出状态&#xff0c;2代表卖出股票。3代表冷冻int[][] dp new int[prices.length][4];dp[0][0] -prices[0];for(int i 1 ; …

Android EditText关于imeOptions的设置和响应

日常开发中&#xff0c;最绕不开的一个控件就是EditText&#xff0c;随之避免不了的则是对其软键盘事件的监听&#xff0c;随着需求的不同对用户输入的软键盘要求也不同&#xff0c;有的场景需要用户输入完毕后&#xff0c;有一个确认按钮&#xff0c;有的场景需要的是回车&…

【Docker】Docker存储卷

文章目录 一、什么是存储卷二、为什么需要存储卷三、存储卷分类四、管理卷Volume创建卷方式一&#xff1a;Volume 命令操作方式二&#xff1a;-v 或者--mount 指定方式三&#xff1a;Dockerfile 匿名卷 操作案例Docker 命令创建管理卷Docker -v 创建管理卷Docker mount 创建管理…

提升VR全景摄影画质的8个因素

如今VR全景拍摄的门槛已经很低&#xff0c;包括无人机、全景相机等都具有一键全景的功能。很多初次接触VR全景拍摄的朋友会发现同样的设备&#xff0c;为啥拍出来的效果就不如别人呢&#xff1f; 其实&#xff0c;要提升VR全景拍摄质量&#xff0c;只需要了解以下几个环节&…

聚观早报 | 比亚迪秦PLUS荣耀版上市;任天堂成日本最富有公司

聚观早报每日整理最值得关注的行业重点事件&#xff0c;帮助大家及时了解最新行业动态&#xff0c;每日读报&#xff0c;就读聚观365资讯简报。 整理丨Cutie 2月20日消息 比亚迪秦PLUS荣耀版上市 任天堂成日本最富有公司 理想汽车2024春季发布会 真我12 Pro系列国内官宣 …

leetcode 105. 从前序与中序遍历序列构造二叉树【构造二叉树】

原题链接&#xff1a;105. 从前序与中序遍历序列构造二叉树 题目描述&#xff1a; 给定两个整数数组 preorder 和 inorder &#xff0c;其中 preorder 是二叉树的先序遍历&#xff0c; inorder 是同一棵树的中序遍历&#xff0c;请构造二叉树并返回其根节点。 输入输出描述&…

数据采集三防平板丨三防平板电脑丨停车场应用

随着现代科技的不断发展&#xff0c;三防平板已经成为许多人工作和生活的必备工具。在停车场这个场景中&#xff0c;三防平板的应用可以大大提高停车场管理的效率和安全性。 停车场是现代城市交通管理的重要组成部分&#xff0c;它直接关系到城市交通的流畅和公共安全。停车场…