通俗易懂地理解稀疏性

news2025/4/27 14:11:23

今天我想与大家探讨的是一个数学和工程学中的重要概念——稀疏性。这个概念可能听起来很抽象,但它实际上贯穿于我们生活中的许多方面。那么,稀疏性到底是什么呢?简单来说,在数学和信号处理领域,一个信号被称为稀疏,指的是它在某个域(例如时间域、频率域或其他变换域)中只有少量的非零元素。

示例

我们通过两个生活中的例子来理解一下。

窗户上的泥

让我们通过一个实际例子来描绘稀疏性。假设你有一扇带有许多小玻璃窗格的窗户。一天,沙尘暴过后,只有几个窗格上沾满了泥土,而其他的还是一尘不染。这些脏窗格像是非零元素,而干净的窗格像是零元素。你的窗户在被污染的“域”上就体现了稀疏性——只有极少数的元素是“活跃”的。
在这里插入图片描述

观察温度

现在让我们从窗户转换到数据。想象你正在测量一天中的温度变化,并每分钟记录一次。你可能会看到温度在大多数时间里保持相对稳定,但在日出和日落时,温度会发生快速变化。如果我们把这个数据集制作成图表,大部分数据点会形成一条直线(这些点可以视为“零”值,因为它们没有信息变化),而只有在日出和日落时的那些点会因温度变化而“跳跃”出来(非零值)。

在这里插入图片描述

在这个例子中,24小时的温度记录在时间域上是稀疏的,因为只有相对较少的点包含大量的信息(即温度变化显著的点)。而在其他时间点,由于温度变化很小,那些数据点并没有提供太多的信息,就像我们窗户上的干净窗格一样。

稀疏性的作用

稀疏性有什么用处呢?其实,在信号处理和数据压缩中,稀疏性是极其重要的。稀疏性使我们能够只保存那些有意义的信息点,并忽略那些“零”信息点,从而有效地减少数据的大小。这就像你在清洁窗户时只需专注于脏的窗格,无需浪费时间擦拭那些已经干净的窗格。

不仅在数据存储方面,稀疏性还在图像处理、医学成像、无线通信等领域中发挥着关键作用。通过利用信号的稀疏性,科学家和工程师能够创建更加高效的算法和技术,以解决现实世界中的问题。

总结

一个信号如果在某个域具有很多“零”值,并且只有少数非零值,我们可以说它在这个域是稀疏的。这种稀疏性是极富价值的,因为它让信息处理、存储和传输更加高效。

例子

数据稀疏性指的是数据中大量元素为零或接近零,这种数据可以通过特殊的数据结构或格式存储,从而减少存储空间。一个常见的方法是运用压缩感知(Compressive Sensing)原理,或者简单地使用稀疏表示方法,例如存储非零元素的位置和值,并忽略零值元素。

下面是一个简单的例子,以及如何在Python中实现数据压缩和解压缩:

示例

例子:假设我们有一个一维数组,里面包含很多的零值元素。

原始数组:[0, 0, 0, 0, 5, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0]

我们可以通过只存储非零元素的位置(索引)和相应的值来压缩这个数组:

压缩表示:[(4, 5), (7, 3), (13, 2)]

Python实现

下面是Python中的一种实现方式:

# -*- coding: utf-8 -*-
"""
Created on Tue Feb 20 09:28:40 2024

@author: 李立宗

公众号:计算机视觉之光

知识星球:计算机视觉之光

"""

def compress_data(data):
    # 压缩数据
    return [(index, value) for index, value in enumerate(data) if value != 0]

def decompress_data(compressed_data, total_length):
    # 解压数据
    data = [0]*total_length 
    for index, value in compressed_data:
        data[index] = value
    return data

# 原始数据
original_data = [0, 0, 0, 0, 5, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0]


# 原始数据
print(f'original Data: {original_data}')


# 压缩数据
compressed_data = compress_data(original_data)
print(f'Compressed Data: {compressed_data}')

# 解压缩数据
decompressed_data = decompress_data(compressed_data, len(original_data))
print(f'Decompressed Data: {decompressed_data}')

执行上述代码后,你会得到以下输出,这展示了如何从原始数据中创建压缩表示,以及如何从压缩数据恢复原始数据:

original Data: [0, 0, 0, 0, 5, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0]
Compressed Data: [(4, 5), (7, 3), (13, 2)]
Decompressed Data: [0, 0, 0, 0, 5, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0]

在这里插入图片描述

注意这只是一个非常基础的压缩方式,现实世界中可能会使用更复杂的压缩算法,比如维护一个更紧凑的数据结构或使用特殊的编码技巧来进一步提高压缩率。

问题

如果说我们的数据不完美,例如,有很多数值其实是0.02这样的数据,不是0.
那他就不是稀疏的了。
这时怎么办呢?
好办,我们直接把接近于零的值处理为0就好了。
这也是一定意义上的 “压缩”了。因为,此时数据能够更好地压缩了。

Python实现

# -*- coding: utf-8 -*-
"""
Created on Tue Feb 20 09:16:15 2024

@author: 李立宗

公众号:计算机视觉之光

知识星球:计算机视觉之光

"""

import numpy as np
import matplotlib.pyplot as plt

# 生成一个稀疏信号
np.random.seed(0)
signal_length = 100
signal = np.zeros(signal_length)
non_zero_indices = np.random.choice(range(signal_length), 10, replace=False)
signal[non_zero_indices] = np.random.randn(10)

print(signal)

# 输出原始数据尺寸大小
original_size = signal.shape
print(f'Original Data Size: {original_size} bytes')

# 绘制原始信号
plt.figure(figsize=(16, 6))
plt.subplot(1, 2, 1)
plt.stem(signal, use_line_collection=True)
plt.title('Original Sparse Signal')

# 压缩信号:设置阈值并保留非零值
threshold = 0.1
compressed_signal = signal * (abs(signal) > threshold)
print(compressed_signal)
# 输出压缩后数据尺寸大小
compressed_size = compressed_signal.shape
print(f'Compressed Data Size: {compressed_size} bytes')

# 绘制压缩后的信号
plt.subplot(1, 2, 2)
plt.stem(compressed_signal, use_line_collection=True)
plt.title('Compressed Signal')
plt.show()

# 打印压缩率
non_zero_count_original = np.count_nonzero(signal)
print(non_zero_count_original)
non_zero_count_compressed = np.count_nonzero(compressed_signal)
print(non_zero_count_compressed)
compression_rate = 1 - non_zero_count_compressed / non_zero_count_original
print(f'Compression Rate: {compression_rate:.2%}')

# 假设我们要从压缩的信号中重构原始信号
# 在这个简单的例子中,重构只是一个未压缩步骤,因为我们没有实施变换
reconstructed_signal = compressed_signal  # 实际应用可能需要复杂的重建过程

示意图

处理后,几乎没有变化。

在这里插入图片描述

输出结果

非常小的数据被“压缩”没了。原来有10个非零值,现在是9个。
在这里插入图片描述

相关博文

理解并实现OpenCV中的图像平滑技术

OpenCV中的边缘检测技术及实现

OpenCV识别人脸案例实战

入门OpenCV:图像阈值处理

我的图书

下面两本书欢迎大家参考学习。

OpenCV轻松入门

李立宗,OpenCV轻松入门,电子工业出版社,2023
本书基于面向 Python 的 OpenCV(OpenCV for Python),介绍了图像处理的方方面面。本书以 OpenCV 官方文档的知识脉络为主线,并对细节进行补充和说明。书中不仅介绍了 OpenCV 函数的使用方法,还介绍了函数实现的算法原理。

在介绍 OpenCV 函数的使用方法时,提供了大量的程序示例,并以循序渐进的方式展开。首先,直观地展示函数在易于观察的小数组上的使用方法、处理过程、运行结果,方便读者更深入地理解函数的原理、使用方法、运行机制、处理结果。在此基础上,进一步介绍如何更好地使用函数处理图像。在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的实例来说明问题,避免使用过多复杂抽象的公式。

本书适合计算机视觉领域的初学者阅读,包括在校学生、教师、专业技术人员、图像处理爱好者。
本书第1版出版后,深受广大读者朋友的喜爱,被很多高校选为教材,目前已经累计重印9次。为了更好地方便大家学习,对本书进行了修订。
在这里插入图片描述

计算机视觉40例

李立宗,计算机视觉40例,电子工业出版社,2022
近年来,我深耕计算机视觉领域的课程研发工作,在该领域尤其是OpenCV-Python方面积累了一点儿经验。因此,我经常会收到该领域相关知识点的咨询,内容涵盖图像处理的基础知识、OpenCV工具的使用、深度学习的具体应用等多个方面。为了更好地把所积累的知识以图文的形式分享给大家,我将该领域内的知识点进行了系统的整理,编写了本书。希望本书的内容能够对大家在计算机视觉方向的学习有所帮助。
本书以OpenCV-Python(the Python API for OpenCV)为工具,以案例为载体,系统介绍了计算机视觉从入门到深度学习的相关知识点。
本书从计算机视觉基础、经典案例、机器学习、深度学习、人脸识别应用等五个方面对计算机视觉的相关知识点做了全面、系统、深入的介绍。书中共介绍了40余个经典的计算机视觉案例,其中既有字符识别、信息加密、指纹识别、车牌识别、次品检测等计算机视觉的经典案例,也包含图像分类、目标检测、语义分割、实例分割、风格迁移、姿势识别等基于深度学习的计算机视觉案例,还包括表情识别、驾驶员疲劳监测、易容术、识别年龄和性别等针对人脸的应用案例。
在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的示例来说明问题,避免使用复杂抽象的公式来介绍。
本书适合计算机视觉领域的初学者阅读,适于在校学生、教师、专业技术人员、图像处理爱好者使用。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1458439.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

网络原理HTTP/HTTPS(2)

文章目录 HTTP响应状态码200 OK3xx 表示重定向4xx5xx状态码小结 HTTPSHTTPS的加密对称加密非对称加密 HTTP响应状态码 状态码表⽰访问⼀个⻚⾯的结果.(是访问成功,还是失败,还是其他的⼀些情况…).以下为常见的状态码. 200 OK 这是⼀个最常⻅的状态码,表⽰访问成功 2xx都表示…

redis 异步队列

//produceMessage.ts 模拟生产者 import Redis from ioredis; const redis new Redis(); // 生产者:将消息推送到队列 async function produceMessage(queueName:string, message:string) {try {await redis.rpush(queueName, message);console.log(Produced messa…

D258——可单电源或双电源 工作,应用范围包括变频放大器、DC增益部件和所有常规运算放大电路。

D258是由两个独立的高增益运算放大器组成。可以是单电源工作,也可以是双电源工作,电源的电流消耗与电源电压大小无关。应用范围包括变频放大器、DC增益部件和所有常规运算放大电路。 主要特点: ● 可单电源或双电源 工作 ● 在一个封装内的两个经内部补…

【LeetCode每日一题】单调栈 581. 最短无序连续子数组

581. 最短无序连续子数组 给你一个整数数组 nums ,你需要找出一个 连续子数组 ,如果对这个子数组进行升序排序,那么整个数组都会变为升序排序。 请你找出符合题意的 最短 子数组,并输出它的长度。 示例 1: 输入&am…

JS逆向进阶篇【去哪儿旅行登录】【中篇-滑动轨迹破解补浏览器环境破参数】

目录: 每篇前言:0、整体分析1、逆向轨迹snapshot(1)分析:(2)Python轨迹生成:(3)AES加密:(4)轨迹加密:&#xf…

【Java EE初阶二十】关于http(一)

1. 初识http HTTP 最新的版本应该是 HTTP/3.0,目前大规模使用的版本 HTTP/1.1; 下面来简单说明一下使用 HTTP 协议的场景: 1、浏览器打开网站 (基本上) 2、手机 APP 访问对应的服务器 (大概率) 前面的 TCP与UDP 和http不同,HTTP 的报文格式&a…

Java实现自动化pdf打水印小项目 使用技术pdfbox、Documents4j

文章目录 前言源码获取一、需求说明二、 调研pdf处理工具word处理工具 三、技术栈选择四、功能实现实现效果详细功能介绍详细代码实现项目目录WordUtilsMain类实现部分:第一部分Main类实现部分:第二部分Main类实现部分:第三部分 资料获取 前言…

如何保护文件夹数据?怎么加密文件夹数据?

文件夹是电脑储存、管理数据的重要工具,为了避免文件夹数据泄露,我们需要加密保护文件夹。那么,怎么加密文件夹呢?下面我们就来了解一下。 如何避免文件夹数据泄露? 保护文件夹数据安全的方法有很多,例如…

QT-地形3D

QT-地形3D 一、 演示效果二、关键程序三、下载链接 一、 演示效果 二、关键程序 #include "ShaderProgram.h"namespace t3d::core {void ShaderProgram::init() {initializeOpenGLFunctions();loadShaders(); }void ShaderProgram::addShader(const QString &fil…

C++-带你初步走进继承(1)

1.继承的概念及定义 1.1继承的概念 继承 (inheritance) 机制是面向对象程序设计 使代码可以复用 的最重要的手段,它允许程序员在 保 持原有类特性的基础上进行扩展 ,增加功能,这样产生新的类,称派生类。继承 呈现了面向对象 …

在线SM3 HMAC加密工具

在线HMAC加密工具提供一站式服务,支持MD5至SHA512、RIPEMD160及SM3等多种哈希算法,用户可便捷选择算法并生成安全的HMAC散列值,确保消息完整性与验证来源。适用于开发调试、网络安全测试及敏感数据处理场景。 在线HMAC加密 - BTool在线工具软…

OpenAI视频生成模型Sora的全面解析:从ViViT、Diffusion Transformer到NaViT、VideoPoet

前言 真没想到,距离视频生成上一轮的集中爆发(详见《Sora之前的视频生成发展史:从Gen2、Emu Video到PixelDance、SVD、Pika 1.0》)才过去三个月,没想OpenAI一出手,该领域又直接变天了 自打2.16日OpenAI发布sora以来(其开发团队包…

基于数字双输入的超宽带(0.7-3.1GHz)Doherty功率放大器设计-从理论到ADS版图

基于数字双输入的超宽带(0.7-3.1GHz)Doherty功率放大器设计-从理论到ADS版图 参考论文: 高效连续型射频功率放大器研究 假期就要倒计时啦,估计是寒假假期的最后一个博客,希望各位龙年工作顺利,学业有成。 全部工程下载:基于数字…

企业总部与分部通过DSVPN实现互联

知识改变命运,技术就是要分享,有问题随时联系,免费答疑,欢迎联系! 厦门微思网络​​​​​​https://www.xmws.cn 华为认证\华为HCIA-Datacom\华为HCIP-Datacom\华为HCIE-Datacom Linux\RHCE\RHCE 9.0\RHCA\ Oracle OC…

云上业务一键性能调优,应用程序性能诊断工具 Btune 上线

- 01 - 终于等来了预算,这就把服务迁移到最新的 CPU 平台上去,这样前端的同事立马就能感受我们带来的速度提升了。可是…… 这些性能指标怎么回事?不仅没有全面提升,有些反而下降了。不应该这样啊,这可怎么办&#xf…

【软考中级备考笔记】计算机体系结构

计算机体系结构 2月19日 – 天气:阴转小雪 1. 冯诺依曼计算机体系结构 冯诺依曼将计算机分为了五大部分,分别是: 控制器:主要负责协调指令到执行运算器:负责算数和逻辑运算存储器:负责存储在指令执行过程…

vue封装el-table表格组件

先上效果图&#xff1a; 本文包含了具名插槽、作用域插槽、jsx语法三种&#xff1a; Render.vue&#xff08;很重要&#xff0c;必须有&#xff09;: <script> export default {name: "FreeRender",functional: true,props: {scope:Object,render: Functio…

Gitlab操作流程

阶段1-构建账户信息 1.1 管理员分配账户 方式1-推荐 企业正常使用gitlab时&#xff0c;一般由项目经理(超级管理员)手动创建开发者账户信息&#xff0c;然后将账户发送给开发者&#xff0c;以便登录使用&#xff1b; 流程如下&#xff1a; 点击创建用户按钮&#xff1b; 创…

自动驾驶中之定位总结

1 前言2 典型的单个定位方式2.1 基于通信的定位方法2.1.1 GNSS 全球卫星导航系统2.1.1.1 gnss的优点与缺点2.1.1.2 gnss定位技术2.1.1.2.1 RTK定位技术2.1.1.2.2 PPP定位技术 2.1.1.2 gnss定位技术总结 2.1.2 车联网定位 2.1 基于航位推算的定位方法2.1.1 惯性测试单元定位IMU2…

docker安装一系列镜像

启动docker systemctl start docker docker 启动已经停止的容器 docker start idOrName PS&#xff1a;idOrName为容器的id或者名称 1、安装mysql镜像 拉取mysql5.7的镜像 docker pull mysql:5.7 查看镜像 docker images 启动mysql #启动mysql docker run --name mysql…