JVM--- 垃圾收集器详细整理

news2025/1/14 0:56:13

目录

一、垃圾收集需要考虑的三个事情:

二、垃圾回收针对的区域

三、如何判断对象已死

        1.引用计数算法:

        2.可达性分析算法

四、引用

五、生存还是死亡?

六、回收方法区

七、垃圾收集算法

        1.分代收集理论

2.标记-清除算法

        3.标记-复制算法

4.标记-整理算法

八、经典垃圾收集器

        1.CMS垃圾收集器

        2.Garbage First收集器


一、垃圾收集需要考虑的三个事情:

  1. 那些内存需要回收(判断对象已死)
  2. 什么时候回收?(空间满或者有新生代的对象要转换成老年代)
  3. 如何回收(垃圾收集算法)

二、垃圾回收针对的区域

        程序计数器、虚拟机栈、本地方法栈3个区域随线程而生,随线程而灭,栈中的栈帧随着方法的进入和退出而有条不紊地执行着出栈和入栈操作。每一个栈帧中分配多少内存基本上是在类结构确定下来时就已知的,因此这几个区域的内存分配和回收都具备确定性,在这几个区域内就不需要过多考虑如何回收的问题,当方法结束或者线程结束时,内存自然就跟随着回收了。

        而Java堆和方法区这两个区域则有着很显著的不确定性:一个接口的多个实现类需要的内存可能会不一样,一个方法所执行的不同条件分支所需要的内存也可能不一样,只有处于运行期间,我们才能知道程序究竟会创建哪些对象,创建多少个对象,这部分内存的分配和回收是动态的。垃圾收集器所关注的正是这部分内存该如何管理。

三、如何判断对象已死

        在堆里面存放着Java世界中几乎所有的对象实例,垃圾收集器在对堆进行回收前,第一件事情就是要确定这些对象之中哪些还“存活”着,哪些已经“死去”(“死去”即不可能再被任何途径使用的对象)了。

        1.引用计数算法:

        在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的。客观地说,引用计数算法(Reference Counting)虽然占用了一些额外的内存空间来进行计数,但它的原理简单,判定效率也很高,在大多数情况下它都是一个不错的算法。

        但是,在Java领域,至少主流的Java虚拟机里面都没有选用引用计数算法来管理内存,主要原因是,这个看似简单的算法有很多例外情况要考虑,必须要配合大量额外处理才能保证正确地工作,譬如单纯的引用计数就很难解决对象之间相互循环引用的问题。

        2.可达性分析算法

        当前主流的商用程序语言(Java、C#,上溯至前面提到的古老的Lisp)的内存管理子系统,都是通过可达性分析(Reachability Analysis)算法来判定对象是否存活的。这个算法的基本思路就是通过一系列称为“GC Roots”的根对象作为起始节点集,从这些节点开始,根据引用关系向下搜索,搜索过程所走过的路径称为“引用链”(Reference Chain),如果某个对象到GC Roots间没有任何引用链相连,或者用图论的话来说就是从GC Roots到这个对象不可达时,则证明此对象是不可能再被使用的。

        在Java技术体系里面,固定可作为GC Roots的对象包括以下几种:

  • 在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使用到的参数、局部变量、临时变量等。
  • 在方法区中类静态属性引用的对象,譬如Java类的引用类型静态变量。
  • 在方法区中常量引用的对象,譬如字符串常量池(String Table)里的引用。·在本地方法栈中JNI(即通常所说的Native方法)引用的对象。
  • Java虚拟机内部的引用,如基本数据类型对应的Class对象,一些常驻的异常对象(比如NullPointExcepiton、OutOfMemoryError)等,还有系统类加载器。
  • 所有被同步锁(synchronized关键字)持有的对象。
  • 反映Java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等。

        除了这些固定的GC Roots集合以外,根据用户所选用的垃圾收集器以及当前回收的内存区域不同,还可以有其他对象“临时性”地加入,共同构成完整GC Roots集合。譬如分代收集和局部回收(Partial GC),如果只针对Java堆中某一块区域发起垃圾收集时(如最典型的只针对新生代的垃圾收集),必须考虑到内存区域是虚拟机自己的实现细节(在用户视角里任何内存区域都是不可见的),更不是孤立封闭的,所以某个区域里的对象完全有可能被位于堆中其他区域的对象所引用,这时候就需要将这些关联区域的对象也一并加入GC Roots集合中去,才能保证可达性分析的正确性。

        目前最新的几款垃圾收集器无一例外都具备了局部回收的特征,为了避免GC Roots包含过多对象而过度膨胀,它们在实现上也做出了各种优化处理。

四、引用

        在JDK 1.2版之后,Java对引用的概念进行了扩充,将引用分为强引用(Strongly Re-ference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)4种,这4种引用强度依次逐渐减弱。

        强引用是最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Object obj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。

        软引用是用来描述一些还有用,但非必须的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。在JDK 1.2版之后提供了SoftReference类来实现软引用。

        弱引用也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2版之后提供了WeakReference类来实现弱引用。

        虚引用也称为“幽灵引用”或者“幻影引用”,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的只是为了能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2版之后提供了PhantomReference类来实现虚引用。

五、生存还是死亡?

        即使在可达性分析算法中判定为不可达的对象,也不是“非死不可”的,这时候它们暂时还处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,那它将会被第一次标记,随后进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。假如对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,那么虚拟机将这两种情况都视为“没有必要执行”。如果这个对象被判定为确有必要执行finalize()方法,那么该对象将会被放置在一个名为F-Queue的队列之中,并在稍后由一条由虚拟机自动建立的、低调度优先级的Finalizer线程去执行它们的finalize()方法。这里所说的“执行”是指虚拟机会触发这个方法开始运行,但并不承诺一定会等待它运行结束。这样做的原因是,如果某个对象的finalize()方法执行缓慢,或者更极端地发生了死循环,将很可能导致F-Queue队列中的其他对象永久处于等待,甚至导致整个内存回收子系统的崩溃。finalize()方法是对象逃脱死亡命运的最后一次机会,稍后收集器将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize()中成功拯救自己——只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或者对象的成员变量,那在第二次标记时它将被移出“即将回收”的集合;如果对象这时候还没有逃脱,那基本上它就真的要被回收了。从代码清单3-2中我们可以看到一个对象的finalize()被执行,但是它仍然可以存活。

六、回收方法区

        在Java堆中,尤其是在新生代中,对常规应用进行一次垃圾收集通常可以回收70%至99%的内存空间,相比之下,方法区回收囿于苛刻的判定条件,其区域垃圾收集的回收成果往往远低于此。

        方法区的垃圾收集主要回收两部分内容:废弃的常量和不再使用的类型。回收废弃常量与回收Java堆中的对象非常类似。举个常量池中字面量回收的例子,假如一个字符串“java”曾经进入常量池中,但是当前系统又没有任何一个字符串对象的值是“java”,换句话说,已经没有任何字符串对象引用常量池中的“java”常量,且虚拟机中也没有其他地方引用这个字面量。如果在这时发生内存回收,而且垃圾收集器判断确有必要的话,这个“java”常量就将会被系统清理出常量池。常量池中其他类(接口)、方法、字段的符号引用也与此类似。

        判定一个常量是否“废弃”还是相对简单,而要判定一个类型是否属于“不再被使用的类”的条件就比较苛刻了。需要同时满足下面三个条件:

  • 该类所有的实例都已经被回收,也就是Java堆中不存在该类及其任何派生子类的实例。
  • 加载该类的类加载器已经被回收。
  • 该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

Java虚拟机被允许对满足上述三个条件的无用类进行回收,这里说的仅仅是“被允许”,而并不是和对象一样,没有引用了就必然会回收。

七、垃圾收集算法

        1.分代收集理论

        收集器应该将Java堆划分出不同的区域,然后将回收对象依据其年龄(年龄即对象熬过垃圾收集过程的次数)分配到不同的区域之中存储。显而易见,如果一个区域中大多数对象都是朝生夕灭,难以熬过垃圾收集过程的话,那么把它们集中放在一起,每次回收时只关注如何保留少量存活而不是去标记那些大量将要被回收的对象,就能以较低代价回收到大量的空间;如果剩下的都是难以消亡的对象,那把它们集中放在一块,虚拟机便可以使用较低的频率来回收这个区域,这就同时兼顾了垃圾收集的时间开销和内存的空间有效利用。

        在Java堆划分出不同的区域之后,垃圾收集器才可以每次只回收其中某一个或者某些部分的区域——因而才有了“Minor GC”“Major GC”“Full GC”这样的回收类型的划分;也才能够针对不同的区域安排与里面存储对象存亡特征相匹配的垃圾收集算法——因而发展出了“标记-复制算法”“标记-清除算法”“标记-整理算法”等针对性的垃圾收集算法。

        把分代收集理论具体放到现在的商用Java虚拟机里,设计者一般至少会把Java堆划分为新生代(Young Generation)和老年代(Old Generation)两个区域。顾名思义,在新生代中,每次垃圾收集时都发现有大批对象死去,而每次回收后存活的少量对象,将会逐步晋升到老年代中存放。

        跨代引用假说(Intergenerational Reference Hypothesis):跨代引用相对于同代引用来说仅占极少数。

        存在互相引用关系的两个对象,是应该倾向于同时生存或者同时消亡的。举个例子,如果某个新生代对象存在跨代引用,由于老年代对象难以消亡,该引用会使得新生代对象在收集时同样得以存活,进而在年龄增长之后晋升到老年代中,这时跨代引用也随即被消除了。

        我们不应再为了少量的跨代引用去扫描整个老年代,也不必浪费空间专门记录每一个对象是否存在及存在哪些跨代引用,只需在新生代上建立一个全局的数据结构(该结构被称为“记忆集”,Remembered Set),这个结构把老年代划分成若干小块,标识出老年代的哪一块内存会存在跨代引用。此后当发生Minor GC时,只有包含了跨代引用的小块内存里的对象才会被加入到GC Roots进行扫描。虽然这种方法需要在对象改变引用关系(如将自己或者某个属性赋值)时维护记录数据的正确性,会增加一些运行时的开销,但比起收集时扫描整个老年代来说仍然是划算的。

      部分收集(Partial GC):指目标不是完整收集整个Java堆的垃圾收集,其中又分为:

  • 新生代收集(Minor GC/Young GC):指目标只是新生代的垃圾收集。
  • 老年代收集(Major GC/Old GC):指目标只是老年代的垃圾收集。目前只有CMS收集器会有单独收集老年代的行为。
  • 混合收集(Mixed GC):指目标是收集整个新生代以及部分老年代的垃圾收集。目前只有G1收集器会有这种行为。

        整堆收集(Full GC):收集整个Java堆和方法区的垃圾收集。

2.标记-清除算法

  • 算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后,统一回收掉所有被标记的对象,也可以反过来,标记存活的对象,统一回收所有未被标记的对象。标记过程就是对象是否属于垃圾的判定过程。
  • 主要缺点有两个:
    • 内存空间的碎片化问题,标记、清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当以后在程序运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。
    • 执行效率不稳定,如果Java堆中包含大量对象,而且其中大部分是需要被回收的,这时必须进行大量标记和清除的动作,导致标记和清除两个过程的执行效率都随对象数量增长而降低。

        3.标记-复制算法

  • 标记-复制算法常被简称为复制算法。为了解决标记-清除算法面对大量可回收对象时执行效率低的问题。
  • 这样实现简单,运行高效,不过其缺陷也显而易见,这种复制回收算法的代价是将可用内存缩小为了原来的一半,空间浪费未免太多了一点。
  • “半区复制”(Semispace Copying)的垃圾收集算法,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。如果内存中多数对象都是存活的,这种算法将会产生大量的内存间复制的开销,但对于多数对象都是可回收的情况,算法需要复制的就是占少数的存活对象,而且每次都是针对整个半区进行内存回收,分配内存时也就不用考虑有空间碎片的复杂情况,只要移动堆顶指针,按顺序分配即可。

  • Andrew Appel针对具备“朝生夕灭”特点的对象,提出了一种更优化的半区复制分代策略,现在称为“Appel式回收”。HotSpot虚拟机的Serial、ParNew等新生代收集器均采用了这种策略来设计新生代的内存布局[1]。Appel式回收的具体做法是把新生代分为一块较大的Eden空间和两块较小的Survivor空间,每次分配内存只使用Eden和其中一块Survivor。发生垃圾搜集时,将Eden和Survivor中仍然存活的对象一次性复制到另外一块Survivor空间上,然后直接清理掉Eden和已用过的那块Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8∶1,也即每次新生代中可用内存空间为整个新生代容量的90%(Eden的80%加上一个Survivor的10%),只有一个Survivor空间,即10%的新生代是会被“浪费”的。当然,98%的对象可被回收仅仅是“普通场景”下测得的数据,任何人都没有办法百分百保证每次回收都只有不多于10%的对象存活,因此Appel式回收还有一个充当罕见情况的“逃生门”的安全设计,当Survivor空间不足以容纳一次Minor GC之后存活的对象时,就需要依赖其他内存区域(实际上大多就是老年代)进行分配担保(Handle Promotion)。

4.标记-整理算法

  • 标记-复制算法在对象存活率较高时就要进行较多的复制操作,效率将会降低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。
  • 另外,还有一种“和稀泥式”解决方案可以不在内存分配和访问上增加太大额外负担,做法是让虚拟机平时多数时间都采用标记-清除算法,暂时容忍内存碎片的存在,直到内存空间的碎片化程度已经大到影响对象分配时,再采用标记-整理算法收集一次,以获得规整的内存空间。
  • 基于以上两点,是否移动对象都存在弊端,移动则内存回收时会更复杂,不移动则内存分配时会更复杂。从垃圾收集的停顿时间来看,不移动对象停顿时间会更短,甚至可以不需要停顿,但是从整个程序的吞吐量来看,移动对象会更划算。
  • 但如果跟标记-清除算法那样完全不考虑移动和整理存活对象的话,弥散于堆中的存活对象导致的空间碎片化问题就只能依赖更为复杂的内存分配器和内存访问器来解决。譬如通过“分区空闲分配链表”来解决内存分配问题(计算机硬盘存储大文件就不要求物理连续的磁盘空间,能够在碎片化的硬盘上存储和访问就是通过硬盘分区表实现的)。内存的访问是用户程序最频繁的操作,甚至都没有之一,假如在这个环节上增加了额外的负担,势必会直接影响应用程序的吞吐量。
  • 如果移动存活对象,尤其是在老年代这种每次回收都有大量对象存活区域,移动存活对象并更新所有引用这些对象的地方将会是一种极为负重的操作,而且这种对象移动操作必须全程暂停用户应用程序才能进行,这就更加让使用者不得不小心翼翼地权衡其弊端了,像这样的停顿被最初的虚拟机设计者形象地描述为“Stop The World”。
  • 标记-清除算法与标记-整理算法的本质差异在于前者是一种非移动式的回收算法,而后者是移动式的。是否移动回收后的存活对象是一项优缺点并存的风险决策:
  • 针对老年代对象的存亡特征,1974年Edward Lueders提出了另外一种有针对性的“标记-整理”(Mark-Compact)算法,其中的标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存。


八、经典垃圾收集器

        1.CMS垃圾收集器

        CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网网站或者基于浏览器的B/S系统的服务端上,这类应用通常都会较为关注服务的响应速度,希望系统停顿时间尽可能短,以给用户带来良好的交互体验。CMS收集器就非常符合这类应用的需求。

        从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于标记-清除算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤,包括:

  • 初始标记(CMS initial mark)
  • 并发标记(CMS concurrent mark)
  • 重新标记(CMS remark)
  • 并发清除(CMS concurrent sweep)

初始标记、重新标记这两个步骤仍然需要“Stop The World”。

初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快。

        并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行。

        重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短。

        并发清除阶段,清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的。

        由于在整个过程中耗时最长的并发标记和并发清除阶段中,垃圾收集器线程都可以与用户线程一起工作,所以从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。

CMS是一款优秀的收集器,它最主要的优点在名字上已经体现出来:并发收集、低停顿,一些官方公开文档里面也称之为“并发低停顿收集器”。

CMS收集器是HotSpot虚拟机追求低停顿的第一次成功尝试,但是它还远达不到完美的程度,至少有以下三个明显的缺点:

  • CMS收集器对处理器资源非常敏感。事实上,面向并发设计的程序都对处理器资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但却会因为占用了一部分线程(或者说处理器的计算能力)而导致应用程序变慢,降低总吞吐量。
  • 由于CMS收集器无法处理“浮动垃圾”(Floating Garbage),有可能出现“Con-current Mode Failure”失败进而导致另一次完全“Stop The World”的Full GC的产生。在CMS的并发标记和并发清理阶段,用户线程是还在继续运行的,程序在运行自然就还会伴随有新的垃圾对象不断产生,但这一部分垃圾对象是出现在标记过程结束以后,CMS无法在当次收集中处理掉它们,只好留待下一次垃圾收集时再清理掉。这一部分垃圾就称为“浮动垃圾”。同样也是由于在垃圾收集阶段用户线程还需要持续运行,那就还需要预留足够内存空间提供给用户线程使用,因此CMS收集器不能像其他收集器那样等待到老年代几乎完全被填满了再进行收集,必须预留一部分空间供并发收集时的程序运作使用。
  • CMS是一款基于“标记-清除”算法实现的收集器,就可能想到这意味着收集结束时会有大量空间碎片产生。

        2.Garbage First收集器

        Garbage First(简称G1)收集器是垃圾收集器技术发展历史上的里程碑式的成果,它开创了收集器面向局部收集的设计思路和基于Region的内存布局形式。

        G1是一款主要面向服务端应用的垃圾收集器。HotSpot开发团队最初赋予它的期望是(在比较长期的)未来可以替换掉JDK 5中发布的CMS收集器。现在这个期望目标已经实现过半了,JDK 9发布之日,G1宣告取代Parallel Scavenge加Parallel Old组合,成为服务端模式下的默认垃圾收集器,而CMS则沦落至被声明为不推荐使用(Deprecate)的收集器。

        作为CMS收集器的替代者和继承人,设计者们希望做出一款能够建立起“停顿时间模型”(Pause Prediction Model)的收集器,停顿时间模型的意思是能够支持指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间大概率不超过N毫秒这样的目标,这几乎已经是实时Java(RTSJ)的中软实时垃圾收集器特征了。

        那具体要怎么做才能实现这个目标呢?首先要有一个思想上的改变,在G1收集器出现之前的所有其他收集器,包括CMS在内,垃圾收集的目标范围要么是整个新生代(Minor GC),要么就是整个老年代(Major GC),再要么就是整个Java堆(Full GC)。而G1跳出了这个樊笼,它可以面向堆内存任何部分来组成回收集(Collection Set,一般简称CSet)进行回收,衡量标准不再是它属于哪个分代,而是哪块内存中存放的垃圾数量最多,回收收益最大,这就是G1收集器的Mixed GC模式。

        G1开创的基于Region的堆内存布局是它能够实现这个目标的关键。虽然G1也仍是遵循分代收集理论设计的,但其堆内存的布局与其他收集器有非常明显的差异:G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。

        Region中还有一类特殊的Humongous区域,专门用来存储大对象。G1认为只要大小超过了一个Region容量一半的对象即可判定为大对象。每个Region的大小可以通过参数-XX:G1HeapRegionSize设定,取值范围为1MB~32MB,且应为2的N次幂。而对于那些超过了整个Region容量的超级大对象,将会被存放在N个连续的Humongous Region之中,G1的大多数行为都把Humongous Region作为老年代的一部分来进行看待。

        虽然G1仍然保留新生代和老年代的概念,但新生代和老年代不再是固定的了,它们都是一系列区域(不需要连续)的动态集合。G1收集器之所以能建立可预测的停顿时间模型,是因为它将Region作为单次回收的最小单元,即每次收集到的内存空间都是Region大小的整数倍,这样可以有计划地避免在整个Java堆中进行全区域的垃圾收集。更具体的处理思路是让G1收集器去跟踪各个Region里面的垃圾堆积的“价值”大小,价值即回收所获得的空间大小以及回收所需时间的经验值,然后在后台维护一个优先级列表,每次根据用户设定允许的收集停顿时间(使用参数-XX:MaxGCPauseMillis指定,默认值是200毫秒),优先处理回收价值收益最大的那些Region,这也就是“Garbage First”名字的由来。这种使用Region划分内存空间,以及具有优先级的区域回收方式,保证了G1收集器在有限的时间内获取尽可能高的收集效率。

        G1收集器的运作过程大致可划分为以下四个步骤:

  • 初始标记(Initial Marking):仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS指针的值,让下一阶段用户线程并发运行时,能正确地在可用的Region中分配新对象。这个阶段需要停顿线程,但耗时很短,而且是借用进行Minor GC的时候同步完成的,所以G1收集器在这个阶段实际并没有额外的停顿。
  • 并发标记(Concurrent Marking):从GC Root开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象,这阶段耗时较长,但可与用户程序并发执行。当对象图扫描完成以后,还要重新处理SATB记录下的在并发时有引用变动的对象。
  • 最终标记(Final Marking):对用户线程做另一个短暂的暂停,用于处理并发阶段结束后仍遗留下来的最后那少量的SATB记录。
  • 筛选回收(Live Data Counting and Evacuation):负责更新Region的统计数据,对各个Region的回收价值和成本进行排序,根据用户所期望的停顿时间来制定回收计划,可以自由选择任意多个Region构成回收集,然后把决定回收的那一部分Region的存活对象复制到空的Region中,再清理掉整个旧Region的全部空间。这里的操作涉及存活对象的移动,是必须暂停用户线程,由多条收集器线程并行完成的。

        从上述阶段的描述可以看出,G1收集器除了并发标记外,其余阶段也是要完全暂停用户线程的,换言之,它并非纯粹地追求低延迟,官方给它设定的目标是在延迟可控的情况下获得尽可能高的吞吐量,所以才能担当起“全功能收集器”的重任与期望。

        相比CMS,G1的优点有很多,暂且不论可以指定最大停顿时间、分Region的内存布局、按收益动态确定回收集这些创新性设计带来的红利,单从最传统的算法理论上看,G1也更有发展潜力。与CMS的“标记-清除”算法不同,G1从整体来看是基于“标记-整理”算法实现的收集器,但从局部(两个Region之间)上看又是基于“标记-复制”算法实现,无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,垃圾收集完成之后能提供规整的可用内存。这种特性有利于程序长时间运行,在程序为大对象分配内存时不容易因无法找到连续内存空间而提前触发下一次收集。

        不过,G1相对于CMS仍然不是占全方位、压倒性优势的,从它出现几年仍不能在所有应用场景中代替CMS就可以得知这个结论。比起CMS,G1的弱项也可以列举出不少,如在用户程序运行过程中,G1无论是为了垃圾收集产生的内存占用(Footprint)还是程序运行时的额外执行负载(Overload)都要比CMS要高。

        就内存占用来说,虽然G1和CMS都使用卡表来处理跨代指针,但G1的卡表实现更为复杂,而且堆中每个Region,无论扮演的是新生代还是老年代角色,都必须有一份卡表,这导致G1的记忆集(和其他内存消耗)可能会占整个堆容量的20%乃至更多的内存空间;相比起来CMS的卡表就相当简单,只有唯一一份,而且只需要处理老年代到新生代的引用,反过来则不需要,由于新生代的对象具有朝生夕灭的不稳定性,引用变化频繁,能省下这个区域的维护开销是很划算的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1456375.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

11-k8s中网络资源service

一、service资源概述 每当我们企业的业务pod迭代功能的时候,都会修改pod,修改后重新启动pod,ip就会变化,那么在生产环境当中,从用户到宿主机、从宿主机到pod,这一个访问流程,都是事先写好的&…

储能光伏一体化解决方案

上海安科瑞电气股份有限公司 胡冠楠 咨询家:“Acrelhgn”,了解更多产品资讯 1. 工业园区能源数字化系统构成 把一个工业园区的能源系统看成一个微网,这个能源微网可能由微电网、给/排水网、供冷/热管网、燃气管网等等组成。要提高园区的能源…

【安全狐】Windows修改文件时间

Windows修改文件时间 在应急响应过程中不要对文件时间100%的相信 powershell下执行 (ls 1.txt).CreationTimeUtc2029-01-25 06:00:10 (ls 1.txt).LastWriteTimeUtc2029-01-25 06:00:10 (ls 1.txt).LastAccessTimeUtc2029-01-25 06:00:10

selenium 驱动 Edge浏览器,解决selenium打开Edge浏览器闪退问题

一、Edge浏览器驱动下载 1、在设置中查看浏览器的版本号 2、在官网中进行对应下载 Microsoft Edge WebDriver - Microsoft Edge Developer 二、环境变量配置 1、打开设置界面 右击【此电脑】---选择【属性】----选择【高级系统设置】-----点击【环境变量】 2、变量设置 在…

Linux------环境变量

目录 前言 一、环境变量 二、添加PATH环境变量 三、HOME环境变量 四、查看所有环境变量 1.指令获取 2.代码获取 2.1 getenv 2.2main函数的第三个参数 2.3 全局变量environ 五、环境变量存放地点 六、添加自命名环境变量 七、系统环境变量具有全局属性 八、环境变…

[AIGC] 利用 ChatGpt 深入理解 Java 虚拟机(JVM)的内存分布

深入理解 Java 虚拟机(JVM)的内存分布 Java 虚拟机(JVM)是 Java 编程语言的核心运行环境,它负责解释和执行 Java 字节码。在 JVM 中,内存被划分为几个不同的区域,每个区域都有特定的用途。了解…

java生成pdf

1.pdf预览 2.maven <!--pdf--><dependency><groupId>com.itextpdf</groupId><artifactId>itextpdf</artifactId><version>5.5.9</version></dependency><dependency><groupId>com.itextpdf</groupId>…

易点易动设备管理系统:提升企业设备管理效率的智能选择

随着科技的不断进步和企业规模的不断扩大&#xff0c;设备管理对于企业的运营效率和成本控制变得越来越重要。为了更好地管理和掌控企业设备&#xff0c;易点易动设备管理系统应运而生。作为一款全新的智能化设备管理解决方案&#xff0c;易点易动系统能够有效提高企业的设备管…

RabbitMQ监控方法以及核心指标

RabbitMQ监控方法以及核心指标 1. 监控指标采集2. 使用rabbimq插件采集指标2.1 3.8.0之前版本&#xff0c;使用外部插件暴露2.2 3.8.0之后版本&#xff0c;使用内置插件暴露 3. 使用rabbitmq_exporter采集指标3.1 部署rabbitmq_exporter3.2 prometheus采集rabbitmq_exporter的暴…

【DBeaver+mysql】如何在DBeaver中创建mysql服务的连接并新建数据库

一、创建步骤 1、下载安装mysql 8.0&#xff08;注意&#xff0c;安装过程会启动mysql服务&#xff0c;这才是能用命令行执行node处理sql语句的关键&#xff09; 下载地址&#xff1a;https://dev.mysql.com/downloads/file/?id526407 2、下载安装DBeaver数据库管理IDE 3、在…

【presto权威指南】presto介绍

需求&#xff1a;如何从众多数据源中快速处理数据 现实生产架构多源异构&#xff0c;需要一个强有力的工具&#xff08;抽象&#xff09;统一数据查询/分析 这也是presto/trino从诞生之初便贴数据湖查询工具 tag的原因&#xff0c;presto生来为此 生产环境的困境 1.数据源众多…

CrossOver 24.0 让Mac可以运行Windows程序的工具

CrossOver 24.0最新版重点添加了对 DirectX 12 支持&#xff0c;从而在 Mac 上更好地模拟运行 Windows 游戏&#xff0c;开发者在 CrossOver 23 中可以调用 DirectX 12&#xff0c;在模拟游戏的过程中同时调用所有 GPU 核心&#xff0c;从而实现更优秀的渲染效果。 目前CrossOv…

c++入门学习⑥——友元和运算符重载

目录 简介&#xff1a; 友元&#xff1a; 全局函数做友元 类做友元 成员函数做友元 运算符重载 加号运算符重载 代码示例&#xff1a; 输入输出运算符重载 ⭐cin ⭐cout 代码示例&#xff1a; 分析&#xff1a; 自增运算符重载 代码示例&#xff08;成员函数实现…

苹果电脑深度清理工具CleanMyMac X2025中文版

苹果电脑用户们&#xff0c;你们是否经常感到你们的Mac变得不再像刚拆封时那样迅速、流畅&#xff1f;可能是时候对你的苹果电脑进行一次深度清理了。在这个时刻&#xff0c;拥有一些高效的深度清理工具就显得尤为重要。今天&#xff0c;我将介绍几款优秀的苹果电脑深度清理工具…

建立流行病预警指数体系并优化传染病模型:对公共卫生突发事件监测数据的分析

应对紧急情况造成的损害的能力是紧急能力现代化的重要象征。 在应对紧急情况时&#xff0c;政府机构和决策者需要更多信息来源&#xff0c;以更有效地估计灾难可能的演变。 这篇论文提出了一个预测COVID-19动态演变的优化模型&#xff0c;该模型将系统动力学的传播算法与预警指…

Windows如何打开投影到此电脑

1.首先点开设置 找到系统 点击投影到此电脑&#xff0c;如果这3行都显示灰色说明没有开启。 2.如何开启投影到此电脑 ①回到设置&#xff0c;点击应用 ②点击可选应用 ③ 安装无线显示器 投影设置可以和我一样

IP地址证书

IP地址证书&#xff0c;顾名思义&#xff0c;是一种用于验证互联网协议&#xff08;IP&#xff09;地址所有权的数字证书。它类似于网站的安全套接字层&#xff08;SSL&#xff09;证书&#xff0c;但专门用于确认和保障IP地址的所有者身份。这种证书由权威的证书颁发机构&…

【Jvm】性能调优(拓展)Jprofiler如何监控和解决死锁、内存泄露问题

文章目录 Jprofiler简介1.安装及IDEA集成Jprofiler2.如何监控并解决死锁3.如何监控及解决内存泄露(重点)4.总结5.后话 Jprofiler简介 Jprofilers是针对Java开发的性能分析工具(免费试用10天), 可以对Java程序的内存,CPU,线程,GC,锁等进行监控和分析, 1.安装及IDEA集成Jprofil…

proteus8.15图文安装教程

proteus8.15版本可以用STM32系列单片机来进行仿真设计&#xff0c;比7.8版本方便多了&#xff0c;有需要的朋友们可以在公众号后台回复 proteus8.15 获取软件包。 1、下载好软件包&#xff0c;解压如下&#xff0c;右键proteus8.15.sp1以管理员身份运行。 2、第一次安装&#x…

YOLOv6 学习笔记

概况 yolov6 出来的时候 yolov7 已经出了。 YOLOv6设计主要包含以下几个方面&#xff1a; 网络架构设计&#xff1a;对于Backbone和Neck&#xff0c;延续了YOLOv4和YOLOv5的PAN架构思想并使用了重参思想进行了改进&#xff1b;关于Head部分&#xff0c;作者对Decoupled Hea…