1.题目
这道题是2024-2-18的签到题,题目难度为简单。
考察的知识点为DFS算法(树的前序遍历)。
题目链接:N叉树的前序遍历
给定一个 n 叉树的根节点  root ,返回 其节点值的 前序遍历 。
n 叉树 在输入中按层序遍历进行序列化表示,每组子节点由空值 null 分隔(请参见示例)。

2.思路
选择哪个算法?
其实对于树的遍历,我们能想到常见的算法就2个:BFS算法和DFS算法。BFS算法常用于树的层序遍历这种问题,而DFS算法通常用于树的深度遍历(前序遍历、中序遍历、后序遍历)。因此这道题我们选择使用DFS算法来进行遍历。
整体思路
知道了遍历算法后,我们该如何应用到这题呢?我们可以定义一个递归函数dfs,函数传入一个参数node(类型为TreeNode),我们在函数里面判断这个结点是否为空,如果不为空则将当前结点的值添加到结果列表里面,然后利用循环来遍历它的孩子结点列表,循环里面进行dfs递归遍历。这样就能保证遍历的顺序是(根->左->右)。
3.代码
"""
# Definition for a Node.
class Node:
    def __init__(self, val=None, children=None):
        self.val = val
        self.children = children
"""
class Solution:
    def preorder(self, root: 'Node') -> List[int]:
        # 如果root结点为空
        if not root:
            return []
        # 结果列表
        rst = []
        # DFS遍历(前序遍历)
        def dfs(node):
            # 如果结点不为空
            if node:
                # 添加当前结点的值到结果列表里面
                rst.append(node.val)
                # 从左往右递归遍历子结点
                for child in node.children:
                    dfs(child)
        # 遍历root结点
        dfs(root)
        return rst
        ![[Flink04] Flink部署实践](https://img-blog.csdnimg.cn/direct/9c94f985a0cd4a7c9b9ea4f89dd047cc.png)


















