蓝桥杯备赛_python_BFS搜索算法_刷题学习笔记

news2025/3/14 1:05:45

1 bfs广度优先搜索

1.1 是什么

1.2怎么实现

2案例学习

2.1.走迷宫

 2.2.P1443 马的遍历

2.3. 九宫重排(看答案学的,实在写不来)

 2.4.青蛙跳杯子(学完九宫重排再做bingo)

2.5. 长草

 3.总结


1 bfs广度优先搜索

【Python搜索算法】广度优先搜索(BFS)算法原理详解与应用,示例+代码_广度优先算法的路径搜索代码-CSDN博客

1.1 是什么

        看了其他大佬的分享之后,我理解的广度优先搜索是一种图遍历的算法,简单来说是他的访问规则是一层一层的访问,先访问距离节点近的数据,再逐层拓展访问远的数据。与广度优先搜索密切相关的数据类型叫做队列。队列我们可以理解为是日常生活中排队所形成的队形,先进先出是队列最大的特点。

1.2怎么实现

BFS算法的步骤如下:

  1. 初始化:选择一个起始节点,将其标记为已访问,并将其放入队列中(作为起始节点)。
  2. 进入循环:重复以下步骤,直到队列为空。 a. 从队列中取出一个节点。 b. 访问该节点。 c. 将所有未访问的相邻节点加入队列。 d. 标记已访问的节点,以避免重复访问。
  3. 结束循环:当队列为空时,表示已经遍历完整个图。

算法原理:

        BFS的工作原理是通过队列数据结构来管理待访问的节点。它从起始节点开始,然后逐一访问该节点的相邻节点,并将它们加入队列。然后,它从队列中取出下一个节点进行访问,以此类推。这确保了节点按照它们的距离从起始节点逐层遍历,因此BFS可以用于查找最短路径。

        BFS是一个宽度优先的搜索,它在查找最短路径等问题中非常有用。它不会陷入深度过深的路径,因为它会优先探索距离起始节点更近的节点。

总结:广度优先搜索一般来说都会有一个队列去存储节点,同时也会有一个数组去记录访问的状态。 

2案例学习

2.1.走迷宫

输入:

5 5 
1 0 1 1 0
1 1 0 1 1 
0 1 0 1 1
1 1 1 1 1
1 0 0 0 1
1 1 5 5 

输出:

8

         说明一下这道题的思路,这道题非常直观体现了BFS,并且是最基本的BFS。那代码的思路是怎么样的呢?我们来捋一下。

        一开始所说的队列其实就是列表,只是用到了队列的特点,也就是说队列其实就是类似于列表,只是这个算法的思路用到了队列的特点,一开始我想得太复杂了,总以为队列是一个很高级的容器,其实简单理解就是列表。

        那根据BFS的算法思路:

  1. 初始化:将迷宫的起点作为起始节点        queue=[(x1-1,y1-1,step)]
  2. 进入循环:循环终止的条件是什么,当列表为空就终止了       while queue:                    怎么取出列表的第一个元素,这个时候就是队列的特点,先进先出,怎么体现在列表中,进去就是存入,出来就是删除      x,y,step=queue.pop(0)                                          这里页需要注意走迷宫有上下左右四个方向对应的就是坐标的变化,这也是我对子节点的一个理解

         同时已经访问过的点也要做好标记

        我当时还有一个特别想不懂的,哈哈哈哈哈哈,想起来感觉自己特别蠢哈哈哈哈哈。

        怎么着,我想着每一个节点都有四个子节点,那意味着线路会不一样,怎么就知道那一个的step是最小的,结果我看到那个判断的出口就一下子大悟了,最短路径嘛,那早点满足出口条件的不就是最短路径嘛

n, m = map(int,input().split())
data = []
d = [[1,0],[-1,0],[0,1],[0,-1]]
for i in range(n):
    l = list(map(int,input().split()))
    data.append(l)
x1, y1, x2, y2 = map(int,input().split())
def bfs(x1,y1,step):
    queue=[(x1-1,y1-1,step)]
    while queue:
        x,y,step=queue.pop(0)
        if x==x2-1 and y==y2-1:
            return step
        for xx,yy in d:
            dx = x+xx
            dy = y+yy
            if 0<= dx <n and 0<= dy <m and data[dx][dy] :
                data[dx][dy]=0
                queue.append((dx,dy,step+1))
    return -1
print(bfs(x1,y1,0))
 2.2.P1443 马的遍历

做好久了但是还是没有完全通过,怎么办可以帮忙看看嘛 

n, m, x, y= map(int,input().split())
d = [[-1,2],[-2,1],[-2,-1],[-1,-2],[1,2],[2,1],[2,-1],[1,-2]]
data = []
result = [[0 for _ in range(m)]for _ in range(n)]
for i in range(1,n+1):
    for j in range(1,m+1):
        data.append([i,j])
from collections import deque
def bfs(x,y,a,b,step,visit):
    queue = deque([(x,y,step)])
    while len(queue) != 0:
        x1, y1, step = queue.popleft()
        if x1 == a and y1 == b:
            return step
        for xx,yy in d:
            dx = x1+xx
            dy = y1+yy
            if dx < 1 or dx > n or dy < 1 or dy > m:
                continue
            if visit[dx][dy] == 0:
                visit[dx][dy] = 1
                queue.append((dx, dy, step + 1))
    return -1


for i,j in data:
    visit = [[0 for _ in range(m + 1)] for _ in range(n + 1)]
    visit[x][y] = 1
    ans = bfs(x,y,i,j,0,visit)
    result[i-1][j-1] = ans
for i in result:
    for j in i:
        print(j,end='\t')
    print('\n',end='')

2.3. 九宫重排(看答案学的,实在写不来)

6.九宫重排 - 蓝桥云课 (lanqiao.cn)

        我当时自己做的时候就在纠结到底是移动格子还是移动数字,很显然,如果要移动数字那每个数字都需要移动,但是移动格子的话我们只需要对这个格子进行操作就可以了。所以移动格子是最佳方案。

         以下是我自己写的错误代码,真的是错的离谱,纪念一下我稀里糊涂的脑子

start = input()
end = input()

map1 = [[0 for _ in range(3)] for _ in range(3)]
map2 = [[0 for _ in range(3)] for _ in range(3)]
k1, k2 = 0, 0
for i in range(3):
    for j in range(3):
        map1[i][j] = start[k1]
        if start[k1] == '.':
            a, b = i, j
        k1 += 1
for i in range(3):
    for j in range(3):
        map2[i][j] = end[k2]
        k2 += 1

d = [[1,0],[-1,0],[0,1],[0,-1]]

def bfs(a,b,step):
    global map1
    visit = [[0 for _ in range(3)] for _ in range(3)]
    queue = [(a,b,step)]
    visit[a][b] = 1
    while queue:
        x, y, step = queue.pop(0)
        if map1 == map2:
            return step
        for xx,yy in d:
            dx = x+xx
            dy = y+yy
            if dx<0 or dx>2 or dy<0 or dy>2:
                continue
            if visit[dx][dy] == 0:
                visit[dx][dy] = 1
                map1[x][y],map1[dx][dy] = map1[dx][dy],map1[x][y]
                queue.append((dx,dy,step+1))
    return -1
print(bfs(a,b,0))

         别人大佬的代码代码写的真好

蓝桥杯:九宫格重排【BFS】【Python】_重排九宫问题bfs-CSDN博客

        当然我在别人的代码上加上了一些修改以及注释,主要是得自己看得懂

        我也反思了一下自己写的代码思路和别人的,我在一维和二维的变换上处理的十分混乱,导致自己都不知道到底是个什么事儿,因为我也知道是去移动格子,然后交换,但是我就很混乱。当然我的思路还有一些错误。

        别人的代码思路这一点我真是没想到,就是用字典的键值对去存储每一次移动格子后所形成的新字符串的步数,一旦相等了就可以直接返回。

start = input()
end = input()

from collections import deque
def bfs():
    # 创建容器并初始化
    # 创建字典存储每次变换字符串的步数
    dic = {}
    dic[start] = 0
    # 创建队列
    queue = deque()
    queue.append(start)
    d = [[1, 0], [-1, 0], [0, 1], [0, -1]]
    # 进入循环
    while queue:
        now_start = list(queue.popleft())
        # 循环结束出口
        if "".join(now_start) == end:
            return dic["".join(now_start)]
        point = now_start.index('.')
        # 一维的下标转换为二维下标:
        # 转换公式:x = index//二维数组的宽度    y = index%二维数组的宽度
        x = point // 3
        y = point % 3

        step = dic["".join(now_start)]

        for xx,yy in d:
            dx = x+xx
            dy = y+yy
            if dx>=0 and dx<3 and dy>=0 and dy<3:
                new_start = now_start.copy()
                # 二维转一维
                # 转换公式:index = x*二维数组的宽度 + y
                new_start[point],new_start[dx*3+dy] = new_start[dx*3+dy],new_start[point]
                if "".join(new_start) not in dic.keys():
                    # dic.setdefault("".join(new_start),step+1)
                    dic["".join(new_start)] = step+1
                    queue.append("".join(new_start))
    return -1

print(bfs())

 

 知识点笔记:

 2.4.青蛙跳杯子(学完九宫重排再做bingo)

1.青蛙跳杯子 - 蓝桥云课 (lanqiao.cn)

        那学完九宫重排之后写这道题就非常简单了,并且这道题还是一维的,不用转换,其他思路跟九宫重排一模一样。

        题目中所说的三种动作,虽然说是青蛙的跳动,但是把当作杯子的跳动去处理就会简单很多,总之学完九宫重排之后这道题就是很简单了。

start = input()
end = input()

from collections import deque
def bfs():
    d = [1, -1, 2, -2, 3, -3]
    queue = deque()
    queue.append(start)
    dic = {}
    dic[start] = 0

    while queue:
        now_start = list(queue.popleft())
        point = now_start.index('*')

        step = dic["".join(now_start)]

        if "".join(now_start) == end:
            return dic["".join(now_start)]

        for xx in d:
            dx = point+xx
            new_start = now_start.copy()
            if dx in range(0, len(start)):
                new_start[point], new_start[dx] = new_start[dx], new_start[point]
                if "".join(new_start) not in dic.keys():
                    dic["".join(new_start)] = step+1
                    queue.append("".join(new_start))
    return -1

print(bfs())

2.5. 长草

0长草 - 蓝桥云课 (lanqiao.cn)

        这道题一开始的思路是想到了非连通图的遍历,然后我就是这么一个思路,先找到一个初始化的点先进行广度优先搜索,只进行K层的搜索,但是我一直都无法找到怎样去把握让搜索测层数是我想要的,不知道这个怎么解决,在这里遇到了大问题,然后再遍历我的地图看看还有没有另外的点需要搜索的。所以这个思路就需要两个数组,一个是队列,一个是记录我的访问状态,但是我并没有解决。

        然后就换了一个思路,将节点先依次入队,再对每一个节点进行广度优先搜索,这个就比较好控制,多少层那我就调用多少次的bfs。这里有一个点就在于我的while循环的出口是与队列的长度有关(或者是说节点的个数),因为队列只有把所有的节点都遍历完成之后才算。

        总之这道题也是一道与之前有着一点区别的,也可以算作是遍历非连通图的一种方法。

n, m = map(int,input().split())
maps = []
for i in range(n):
    l = list(input())
    maps.append(l)
k = int(input())

from collections import deque
queue = deque()
for i in range(n):
    for j in range(m):
        if maps[i][j] == 'g':
            queue.append((i,j))

d = [[1,0],[-1,0],[0,1],[0,-1]]
def bfs():
    ans = len(queue)
    while ans:
        x1, y1 = queue.popleft()
        for xx,yy in d:
            dx = x1+xx
            dy = y1+yy
            # if dx<0 or dx>=n or dy<0 or dy>=m:
            #     continu
            if 0<=dx<n and 0<=dy<m and maps[dx][dy] == '.':
                maps[dx][dy] = 'g'
                queue.append((dx,dy))
        ans -= 1

for i in range(k):
    bfs()
for i in maps:
    print(''.join(i))

 

 3.总结

学习还在继续,持续学习加油!!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1453564.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

六、Spring/Spring Boot整合ActiveMQ

Spring/Spring Boot整合ActiveMQ 一、Spring整合ActiveMQ1.pom.xml2.Queue - 队列2.1 applicationContext.xml2.2 生产者2.3 消费者 3.Topic - 主题3.1 applicationContext.xml3.2 生产者3.3 消费者 4.消费者 - 监听器4.1 编写监听器类4.2 配置监听器4.3 生产者消费者一体 二、…

基于PPNSA+扰动算子的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于PPNSA扰动算子的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图和优化收敛曲线。 2.测试软件版本以及运行结果展示 MATLAB2022a版本运行…

Java毕业设计-基于ssm的网上餐厅管理系统-第72期

获取源码资料&#xff0c;请移步从戎源码网&#xff1a;从戎源码网_专业的计算机毕业设计网站 项目介绍 基于ssm的网上餐厅管理系统&#xff1a;前端jsp、jquery、bootstrap&#xff0c;后端 maven、springmvc、spring、mybatis&#xff0c;集成类名管理、菜品管理、订单管理…

Linux第59步_“buildroot”构建根文件系统第1步_生成rootfs.tar和rootfs.ext4以及通过nfs下载测试

学习安装“buildroot”&#xff0c;通过配置构建根文件系统&#xff0c;编译生成rootfs.tar和rootfs.ext4&#xff0c;以及通过nfs下载测试。 1、了解学习目的&#xff1a; 1)、获取“buildroot”安装包&#xff1b; 2)、使用“buildroot”构建根文件系统&#xff1b; 3)、…

使用Apache ECharts同时绘制多个统计图表

目录 1、介绍 2、相关知识 3、代码 4、效果 &#x1f343;作者介绍&#xff1a;双非本科大三网络工程专业在读&#xff0c;阿里云专家博主&#xff0c;专注于Java领域学习&#xff0c;擅长web应用开发、数据结构和算法&#xff0c;初步涉猎Python人工智能开发和前端开发。 …

UE Get节点和源码

文章目录 概要UE Get节点有哪些常见的应用场景相关源码 概要 UE Get节点在Unreal Engine的蓝图系统中用于获取变量的值。这个节点通常用于从变量中读取数据&#xff0c;以便在游戏的逻辑流程中使用。 要使用Get节点&#xff0c;你首先需要有一个已经定义的变量。然后&#xf…

Windows环境部署nginx 文件服务器

文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 前言 在Windows环境下使用nginx部署简单的文件服务器 一、版本 1. Windows 使用版本 2. nginx 使用版本 选择Mainline Version版本 二、nginx配置 1. 下载 https://nginx.org/en/download.…

Unity 减低GC和优化

文章目录 在Unity中&#xff0c;垃圾收集&#xff08;Garbage Collection, GC&#xff09;是一项重要的内存管理机制&#xff0c;但过度的GC活动可能会导致性能瓶颈。优化Unity项目中的GC涉及减少不必要的对象分配和生命周期管理。以下列举了五个实例来详细说明如何降低GC负担并…

用于图像处理的Python顶级库 !!

文章目录 前言 1、OpenCV 2、Scikit-Image 3、Scipy 4、Python Image Library&#xff08;Pillow / PIL&#xff09; 5、Matplotlib 6、SimpleITK 7、Numpy 8、Mahotas 前言 正如IDC所指出的&#xff0c;数字信息将飙升至175ZB&#xff0c;而这些信息中的巨大一部分是图片。数…

安卓实现简单砸地鼠游戏

效果 布局 <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"xmlns:app"http://schemas.android.com/apk/res-auto"xmlns:tools"http://schemas.android.com/tools"android:layout_width"match_parent"a…

开年炸裂-Sora/Gemini

最新人工智能消息 谷歌的新 Gemini 模型 支持多达 1M的Token&#xff0c;可以分析长达一小时的视频 1M Token可能意味着分析700,000 个单词、 30,000 行代码或11 小时的音频、总结、改写和引用内容。 Comment&#xff1a;google公司有夸大的传统&#xff0c;所以真实效果需要上…

【自然语言处理】实验3,文本情感分析

清华大学驭风计划课程链接 学堂在线 - 精品在线课程学习平台 (xuetangx.com) 代码和报告均为本人自己实现&#xff08;实验满分&#xff09;&#xff0c;只展示主要任务实验结果&#xff0c;如果需要详细的实验报告或者代码可以私聊博主 有任何疑问或者问题&#xff0c;也欢…

2024/2/17 图论 最短路入门 dijkstra 1

目录 算法思路 Dijkstra求最短路 AcWing 849. Dijkstra求最短路 I - AcWing 850. Dijkstra求最短路 II - AcWing题库 最短路 最短路 - HDU 2544 - Virtual Judge (vjudge.net) 【模板】单源最短路径&#xff08;弱化版&#xff09; P3371 【模板】单源最短路径&#xf…

文生视频提示词:故事与主题

内容创意 --故事与主题 Story & Theme 这些词汇覆盖了从基本的故事类型到特定的主题和元素&#xff0c;可用于激发创意和定义视频内容的核心主题。 Adventure 冒险 Romance 浪漫 Mystery 神秘 Fantasy 幻想 Science Fiction 科幻 Horror 恐怖 Thriller 惊悚 Comedy 喜剧 Dr…

EXCEL中不错的xlookup函数

excel中一般要经常用vlookup函数&#xff0c;但其实经常麻烦要正序&#xff0c;从左边到右边&#xff0c;还要数列&#xff0c;挺麻烦的&#xff0c;xlookup的函数还不错&#xff0c;有个不错的一套视频介绍,B站的&#xff0c;地址是&#xff1a;XLOOKUP函数基础用法&#xff0…

Python vars函数

在Python编程中&#xff0c;vars()函数是一个常用的内置函数&#xff0c;用于返回对象的__dict__属性。该属性存储了对象的命名空间&#xff0c;包括对象的所有属性和方法。本文将深入探讨Python中的vars()函数&#xff0c;包括基本用法、适用对象、返回结果、实际应用场景&…

MySQL数据库⑪_C/C++连接MySQL_发送请求

目录 1. 下载库文件 2. 使用库 3. 链接MySQL函数 4. C/C链接示例 5. 发送SQL请求 6. 获取查询结果 本篇完。 1. 下载库文件 要使用C/C连接MySQL&#xff0c;需要使用MySQL官网提供的库。 进入MySQL官网选择适合自己平台的mysql connect库&#xff0c;然后点击下载就行…

线程库接口模拟封装(使用参数包接受参数,2种方法)

目录 引入 模拟实现 思路 传递参数包 代码 thread.hpp main.cpp 示例 引入 之前我们一直使用的都是linux中的原生线程库,但c中其实是有提供封装好的线程库的 -- <thread> 下面我们也来试着封装一下线程接口 模拟实现 思路 首先,明确线程库的核心操作: 创建和销毁…

标签结构比目录结构更易用 | Obsidian实践

当我顿悟了标签结构&#xff08;标签树&#xff09;的构建逻辑&#xff0c;彻底摆脱了目录结构的限制&#xff0c;从此可按任意维度管理和检索笔记。 对于每一个新入坑Obsidian的小白菜来说&#xff0c;通过创建目录结构&#xff0c;对笔记进行管理是最符合直觉的方式。但是&am…

【AIGC】大语言模型

大型语言模型&#xff0c;也叫大语言模型、大模型&#xff08;Large Language Model&#xff0c;LLM&#xff1b;Large Language Models&#xff0c;LLMs&#xff09; 什么是大型语言模型 大型语言模型&#xff08;LLM&#xff09;是指具有数千亿&#xff08;甚至更多&#xf…