【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

news2025/3/15 4:11:12

本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题。包括K-近邻算法,线性回归,逻辑回归,决策树算法,集成学习,聚类算法。K-近邻算法的距离公式,应用LinearRegression或SGDRegressor实现回归预测,应用LogisticRegression实现逻辑回归预测,应用DecisionTreeClassifier实现决策树分类,应用RandomForestClassifie实现随机森林算法,应用Kmeans实现聚类任务。

全套笔记和代码自取移步gitee仓库: gitee仓库获取完整文档和代码

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


共 7 章,44 子模块

K-近邻算法

学习目标

  • 掌握K-近邻算法实现过程
  • 知道K-近邻算法的距离公式
  • 知道K-近邻算法的超参数K值以及取值问题
  • 知道kd树实现搜索的过程
  • 应用KNeighborsClassifier实现分类
  • 知道K-近邻算法的优缺点
  • 知道交叉验证实现过程
  • 知道超参数搜索过程
  • 应用GridSearchCV实现算法参数的调优

1.5 kd树

问题导入:

实现k近邻法时,主要考虑的问题是如何对训练数据进行快速k近邻搜索。

这在特征空间的维数大及训练数据容量大时尤其必要。

k近邻法最简单的实现是线性扫描(穷举搜索),即要计算输入实例与每一个训练实例的距离。计算并存储好以后,再查找K近邻。当训练集很大时,计算非常耗时。

为了提高kNN搜索的效率,可以考虑使用特殊的结构存储训练数据,以减小计算距离的次数。


1 kd树简介

1.1 什么是kd树

根据KNN每次需要预测一个点时,我们都需要计算训练数据集里每个点到这个点的距离,然后选出距离最近的k个点进行投票。当数据集很大时,这个计算成本非常高,针对N个样本,D个特征的数据集,其算法复杂度为O(DN^2)

kd树:为了避免每次都重新计算一遍距离,算法会把距离信息保存在一棵树里,这样在计算之前从树里查询距离信息,尽量避免重新计算。其基本原理是,如果A和B距离很远,B和C距离很近,那么A和C的距离也很远。有了这个信息,就可以在合适的时候跳过距离远的点。

这样优化后的算法复杂度可降低到O(DNlog(N))。感兴趣的读者可参阅论文:Bentley,J.L.,Communications of the ACM(1975)。

1989年,另外一种称为Ball Tree的算法,在kd Tree的基础上对性能进一步进行了优化。感兴趣的读者可以搜索Five balltree construction algorithms来了解详细的算法信息。

1.2 原理

image-20190213191654082

黄色的点作为根节点,上面的点归左子树,下面的点归右子树,接下来再不断地划分,分割的那条线叫做分割超平面(splitting hyperplane),在一维中是一个点,二维中是线,三维的是面。

image-20190213191739222

黄色节点就是Root节点,下一层是红色,再下一层是绿色,再下一层是蓝色。

image-20190219101722826

1.树的建立;

2.最近邻域搜索(Nearest-Neighbor Lookup)

kd树(K-dimension tree)是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构。kd树是一种二叉树,表示对k维空间的一个划分,构造kd树相当于不断地用垂直于坐标轴的超平面将K维空间切分,构成一系列的K维超矩形区域。kd树的每个结点对应于一个k维超矩形区域。利用kd树可以省去对大部分数据点的搜索,从而减少搜索的计算量。

image-20190213223817957

类比“二分查找”:给出一组数据:[9 1 4 7 2 5 0 3 8],要查找8。如果挨个查找(线性扫描),那么将会把数据集都遍历一遍。而如果排一下序那数据集就变成了:[0 1 2 3 4 5 6 7 8 9],按前一种方式我们进行了很多没有必要的查找,现在如果我们以5为分界点,那么数据集就被划分为了左右两个“簇” [0 1 2 3 4]和[6 7 8 9]。

因此,根本就没有必要进入第一个簇,可以直接进入第二个簇进行查找。把二分查找中的数据点换成k维数据点,这样的划分就变成了用超平面对k维空间的划分。空间划分就是对数据点进行分类,“挨得近”的数据点就在一个空间里面。

2 构造方法

(1)构造根结点,使根结点对应于K维空间中包含所有实例点的超矩形区域;

(2)通过递归的方法,不断地对k维空间进行切分,生成子结点。在超矩形区域上选择一个坐标轴和在此坐标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点并垂直于选定的坐标轴,将当前超矩形区域切分为左右两个子区域(子结点);这时,实例被分到两个子区域。

(3)上述过程直到子区域内没有实例时终止(终止时的结点为叶结点)。在此过程中,将实例保存在相应的结点上。

(4)通常,循环的选择坐标轴对空间切分,选择训练实例点在坐标轴上的中位数为切分点,这样得到的kd树是平衡的(平衡二叉树:它是一棵空树,或其左子树和右子树的深度之差的绝对值不超过1,且它的左子树和右子树都是平衡二叉树)。

KD树中每个节点是一个向量,和二叉树按照数的大小划分不同的是,KD树每层需要选定向量中的某一维,然后根据这一维按左小右大的方式划分数据。在构建KD树时,关键需要解决2个问题:

(1)选择向量的哪一维进行划分;

(2)如何划分数据;

第一个问题简单的解决方法可以是随机选择某一维或按顺序选择,但是更好的方法应该是在数据比较分散的那一维进行划分(分散的程度可以根据方差来衡量)。好的划分方法可以使构建的树比较平衡,可以每次选择中位数来进行划分,这样问题2也得到了解决。

3 案例分析

3.1 树的建立

给定一个二维空间数据集:T={(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},构造一个平衡kd树。

image-20190219102142984

(1)思路引导:

根结点对应包含数据集T的矩形,选择x(1)轴,6个数据点的x(1)坐标中位数是6,这里选最接近的(7,2)点,以平面x(1)=7将空间分为左、右两个子矩形(子结点);接着左矩形以x(2)=4分为两个子矩形(左矩形中{(2,3),(5,4),(4,7)}点的x(2)坐标中位数正好为4),右矩形以x(2)=6分为两个子矩形,如此递归,最后得到如下图所示的特征空间划分和kd树。

image-20190219102409567

3.2 最近领域的搜索

假设标记为星星的点是 test point, 绿色的点是找到的近似点,在回溯过程中,需要用到一个队列,存储需要回溯的点,在判断其他子节点空间中是否有可能有距离查询点更近的数据点时,做法是以查询点为圆心,以当前的最近距离为半径画圆,这个圆称为候选超球(candidate hypersphere),如果圆与回溯点的轴相交,则需要将轴另一边的节点都放到回溯队列里面来。

image-20190213224152601

样本集{(2,3),(5,4), (9,6), (4,7), (8,1), (7,2)}

3.2.1 查找点(2.1,3.1)

image-20190213224414342

在(7,2)点测试到达(5,4),在(5,4)点测试到达(2,3),然后search_path中的结点为<(7,2),(5,4), (2,3)>,从search_path中取出(2,3)作为当前最佳结点nearest, dist为0.141;

然后回溯至(5,4),以(2.1,3.1)为圆心,以dist=0.141为半径画一个圆,并不和超平面y=4相交,如上图,所以不必跳到结点(5,4)的右子空间去搜索,因为右子空间中不可能有更近样本点了。

于是再回溯至(7,2),同理,以(2.1,3.1)为圆心,以dist=0.141为半径画一个圆并不和超平面x=7相交,所以也不用跳到结点(7,2)的右子空间去搜索。

至此,search_path为空,结束整个搜索,返回nearest(2,3)作为(2.1,3.1)的最近邻点,最近距离为0.141。

3.2.2 查找点(2,4.5)

image-20190219103050940

在(7,2)处测试到达(5,4),在(5,4)处测试到达(4,7)【优先选择在本域搜索】,然后search_path中的结点为<(7,2),(5,4), (4,7)>,从search_path中取出(4,7)作为当前最佳结点nearest, dist为3.202;

然后回溯至(5,4),以(2,4.5)为圆心,以dist=3.202为半径画一个圆与超平面y=4相交,所以需要跳到(5,4)的左子空间去搜索。所以要将(2,3)加入到search_path中,现在search_path中的结点为<(7,2),(2, 3)>;另外,(5,4)与(2,4.5)的距离为3.04 < dist = 3.202,所以将(5,4)赋给nearest,并且dist=3.04。

回溯至(2,3),(2,3)是叶子节点,直接平判断(2,3)是否离(2,4.5)更近,计算得到距离为1.5,所以nearest更新为(2,3),dist更新为(1.5)

回溯至(7,2),同理,以(2,4.5)为圆心,以dist=1.5为半径画一个圆并不和超平面x=7相交, 所以不用跳到结点(7,2)的右子空间去搜索。

至此,search_path为空,结束整个搜索,返回nearest(2,3)作为(2,4.5)的最近邻点,最近距离为1.5。

4 总结

首先通过二叉树搜索(比较待查询节点和分裂节点的分裂维的值,小于等于就进入左子树分支,大于就进入右子树分支直到叶子结点),顺着“搜索路径”很快能找到最近邻的近似点,也就是与待查询点处于同一个子空间的叶子结点;

然后再回溯搜索路径,并判断搜索路径上的结点的其他子结点空间中是否可能有距离查询点更近的数据点,如果有可能,则需要跳到其他子结点空间中去搜索(将其他子结点加入到搜索路径)。

重复这个过程直到搜索路径为空。

未完待续, 同学们请等待下一期

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1453398.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue练习1:组件开发1(头像组件)

样式预览 注释代码 <template><div class"img-box":style"{ //动态style必须为对象width: size rem,height: size rem}"><imgclass"avatar-img":src"url" //动态url/></div> </templ…

【ARM架构】ARMv8-A 系统中的安全架构概述

一个安全或可信的操作系统保护着系统中敏感的信息&#xff0c;例如&#xff0c;可以保护用户存储的密码&#xff0c;信用卡等认证信息免受攻击。 安全由以下原则定义&#xff1a; 保密性&#xff1a;保护设备上的敏感信息&#xff0c;防止未经授权的访问。有以下几种方法可以做…

算法详解:滑动窗口-- 最大连续1的个数 III

题目来源:力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 本期讲解滑动窗口经典例题,我会从三个点开始讲解题目1.题目解析2.算法原理 3.编写代码 1.题目解析 这道题目理解起来还是比较简单的,我们简单分析一下,也就是给定一个数组,数组是由1和0组成…

PLC-Recorder的延伸分析功能说明

目录 一、缘起 二、如何从PLC-Recorder获取数据 1、在线获取 2、全自主打开数据文件 3、延伸分析 三、设置方法 四、效果展示 一、缘起 在各个行业&#xff0c;在不同的场景中&#xff0c;朋友们拿到数据后&#xff0c;想做的事情五花八门&#xff0c;有做宏观分析的、…

ABC341 A-G

Toyota Programming Contest 2024#2&#xff08;AtCoder Beginner Contest 341&#xff09; - AtCoder B读不懂题卡了&#xff0c;F读假题卡了&#xff0c;开题开慢了rank了 A - Print 341 题意&#xff1a; 打印一串交替出现的包含N个0&#xff0c;N1个1的01串 代码&…

OpenCV-40 绘制直方图

一、使用matplotlib画直方图 可以利用matplotlib把OpenCV统计得到的直方图绘制出来 示例代码如下&#xff1a; import cv2 import matplotlib.pyplot as pltlena cv2.imread("beautiful women.png") # 变为黑白图片 gray cv2.cvtColor(lena, cv2.COLOR_BGR2GRAY…

视觉设计师的项目评审复盘攻略:如何提升设计质量与效率

视觉设计师的角色是至关重要的&#xff0c;以确保设计项目满足预期的质量和结果。作为一名视觉设计师&#xff0c;有必要进行定期的项目审查&#xff0c;以确保项目在正轨上进行&#xff0c;并尽早解决任何问题。在本文中我们将讨论可视化设计人员如何做好项目评审&#xff0c;…

HarmonyOS—@State装饰器:组件内状态

State装饰的变量&#xff0c;或称为状态变量&#xff0c;一旦变量拥有了状态属性&#xff0c;就和自定义组件的渲染绑定起来。当状态改变时&#xff0c;UI会发生对应的渲染改变。 在状态变量相关装饰器中&#xff0c;State是最基础的&#xff0c;使变量拥有状态属性的装饰器&a…

永久禁止windows自动更新方法

文章目录 前言一、打开本地组策略编辑器二、禁用windows更新总结 前言 每次打开电脑&#xff0c;右下角就会弹出设备更新提示&#xff0c;看着令人烦恼&#xff0c;并且更新可能导致电脑设置发生改变甚至是卡顿&#xff0c;所以为了自己方便于是出了禁用电脑更新的办法&#x…

「算法」二分查找1:理论细节

&#x1f387;个人主页&#xff1a;Ice_Sugar_7 &#x1f387;所属专栏&#xff1a;算法详解 &#x1f387;欢迎点赞收藏加关注哦&#xff01; 二分查找算法简介 这个算法的特点就是&#xff1a;细节多&#xff0c;出错率高&#xff0c;很容易就写成死循环有模板&#xff0c;但…

Day46 300最长递增子序列 674最长连续递增子序列 718最长重复子数组 1143最长公共子序列

300 最长递增子序列 给你一个整数数组 nums &#xff0c;找到其中最长严格递增子序列的长度。 子序列是由数组派生而来的序列&#xff0c;删除&#xff08;或不删除&#xff09;数组中的元素而不改变其余元素的顺序。例如&#xff0c;[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序…

CV | Segment Anything论文详解及代码实现

本文主要是详解解释了SAM的论文部分以及代码实现~ 论文&#xff1a;2023.04.05_Segment Anything 论文地址&#xff1a;2304.02643.pdf (arxiv.org) 代码地址&#xff1a;facebookresearch/segment-anything: The repository provides code for running inference with the Seg…

【C语言】长篇详解,字符系列篇1-----“混杂”的各种字符类型字符转换和strlen的模拟实现【图文详解】

欢迎来CILMY23的博客喔&#xff0c;本期系列为【C语言】长篇详解&#xff0c;字符系列篇1-----“混杂”的各种字符函数……&#xff0c;图文讲解各种字符函数&#xff0c;带大家更深刻理解C语言中各种字符函数的应用&#xff0c;感谢观看&#xff0c;支持的可以给个赞哇。 前言…

SpringCloud-Nacos集群搭建

本文详细介绍了如何在SpringCloud环境中搭建Nacos集群&#xff0c;为读者提供了一份清晰而详尽的指南。通过逐步演示每个关键步骤&#xff0c;包括安装、配置以及Nginx的负载均衡设置&#xff0c;读者能够轻松理解并操作整个搭建过程。 一、Nacos集群示意图 Nacos&#xff0…

ClickHouse--12-可视化工具操作

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 可视化工具操作1 tabixhttp://ui.tabix.io/ 2 DBeaverhttps://dbeaver.io/download/ 可视化工具操作 1 tabix tabix 支持通过浏览器直接连接 ClickHouse&#xff…

2023年程序员观察报告

春节假期已过&#xff0c;2023年悄然过去&#xff0c;2024年已经到来&#xff0c;无论2023年是快乐的、成长的、积极的&#xff0c;亦或是痛苦的、寂寥的、迷茫的&#xff0c;都要恭喜在座的各位程序员又熬过了一年&#xff01; ①加班篇 2023年&#xff0c;你完成了 132个需求…

【DDD】学习笔记-聚合之间的关系

聚合之间的关系 无论聚合是否表达了领域概念的完整性&#xff0c;我们都要清醒地认识到这种所谓的“完整”必然是相对的。如果说在领域分析模型中&#xff0c;每个体现了领域概念的类是模型的最小单元&#xff0c;那么在领域设计模型中&#xff0c;聚合才是模型的最小单元。我…

基于ORB-SLAM2与YOLOv8剔除动态特征点

基于ORB-SLAM2与YOLOv8剔除动态特征点 以下方法以https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download#freiburg3_walking_xyz数据集进行实验测试APE 首先在不剔除动态特征点的情况下进行测试&#xff1a; 方法1:segment坐标点集合逐一排查剔除 利用YOLOv8的segm…

Kubernetes 元信息与控制器模型

一、资源元信息&#xff1a; Kubernetes 的资源对象组成&#xff1a;主要包括了 Spec、Status 和元数据。其中 Spec 部分用来描述期望的状态&#xff0c;Status 部分用来描述观测到的状态。 元数据主要包括了&#xff1a;Labels 用来识别资源的标签&#xff1b;Annotations 用…

术前皮肤大面积消毒杀菌工具耗材:PP手柄+海绵头洗必泰CHG涂药器

PP手柄海绵头洗必泰CHG消毒涂药器是一种常用于手术前皮肤消毒杀菌的工具。它由PP手柄和海绵头组成&#xff0c;海绵头上涂有必泰CHG消毒液。 这种消毒涂药器被广泛应用于医疗领域&#xff0c;特别是在手术前的皮肤消毒过程中。PP手柄是一种轻便且易于握持的材料&#xff0c;方便…