【机器学习笔记】 9 集成学习

news2025/1/8 5:40:20

集成学习方法概述

Bagging

从训练集中进行子抽样组成每个基模型所需要的子训练集,对所有基模型预测的结果进行综合产生最终的预测结果:
在这里插入图片描述
假设一个班级每个人的成绩都不太好,每个人单独做的考卷分数都不高,但每个人都把自己会做的部分做了,把所有考卷综合起来得到成绩就会比一个人做的高

Boosting

训练过程为阶梯状,基模型按次序一一进行训练(实现上可以做到并行),基模型的训练集按照某种策略每次都进行一定的转化。对所有基模型预测的结果进行线性综合产生最终的预测结果。
在这里插入图片描述

Stacking

将训练好的所有基模型对训练基进行预测,第j个基模型对第i个训练样本的预测值将作为新的训练集中第i个样本的第j个特征值,最后基于新的训练集进行训练。同理,预测的过程也要先经过所有基模型的预测形成新的测试集,最后再对测试集进行预测。
在这里插入图片描述

Random Forest(随机森林)

用随机的方式建立一个森林。随机森林算法由很多决策树组成,每一棵决策树之间没有关联。建立完森林后,当有新样本进入时,每棵决策树都会分别进行判断,然后基于投票法给出分类结果。

  • 优点
    在数据集上表现良好,相对于其他算法有较大的优势
    易于并行化,在大数据集上有很大的优势;
    能够处理高维度数据,不用做特征选择。

Random Forest(随机森林)是 Bagging 的扩展变体,它在以决策树为基学习器构建Bagging 集成的基础上,进一步在决策树的训练过程中引入了随机特征选择,因此可以概括 随机森林包括四个部分:

  1. 随机选择样本(放回抽样);
  2. 随机选择特征;
  3. 构建决策树;
  4. 随机森林投票(平均)。
    在这里插入图片描述
    随机选择样本和 Bagging 相同,采用的是Bootstraping 自助采样法;随机选择特征是指在每个节点在分裂过程中都是随机选择特征的(区别与每棵树随机选择一批特征)。
    这种随机性导致随机森林的偏差会有稍微的增加(相比于单棵不随机树),但是由于随机森林的“平均”特性,会使得它的方差减小,而且方差的减小补偿了偏差的增大,因此总体而言是更好的模型。
    在这里插入图片描述

AdaBoost算法

AdaBoost(Adaptive Boosting,自适应增强),其自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器。同时,在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数。
用一句话概括该思想就是后一个模型的训练永远是在前一个模型的基础上完成
在这里插入图片描述

  • 算法思想
    • 初始化训练样本的权值分布,每个样本具有相同权重;
    • 训练弱分类器,如果样本分类正确,则在构造下一个训练集中,它的权值就会被降低;反之提高。用更新过的样本集去训练下一个分类器;
    • 将所有弱分类组合成强分类器,各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,降低分类误差率大的弱分类器的权重。
    在这里插入图片描述

GBDT算法

GBDT(Gradient Boosting Decision Tree)是一种迭代的决策树算法,该算法由多棵决策树组成,GBDT 的核心在于累加所有树的结果作为最终结果,所以 GBDT 中的树都是回归树,不是分类树,它是属于 Boosting 策略。GBDT 是被公认的泛化能力较强的算法。

  • GBDT 由三个概念组成:Regression Decision Tree(即 DT)、Gradient Boosting(即 GB),和 Shrinkage(缩减)
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
损失函数的负梯度在当前模型的值作为提升树的残差的近似值来拟合回归树
在这里插入图片描述
在这里插入图片描述

XGBoost

XGBoost 是大规模并行 boosting tree 的工具,它是目前最快最好的开源 boosting tree 工具包
,比常见的工具包快 10 倍以上。XGBoost 和GBDT 两者都是 boosting 方法,除了工程实现及解决问题上的一些差异外,最大的不同就是目标函数的定义。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • XGBoost的分裂方式
    使用贪心方法,选增益( 𝑔𝑎𝑖𝑛 )最大的分裂方式。
    贪心方法,众多𝑔𝑎𝑖𝑛中找到最大值做为最优分割节点(split point),因此模型会将所有样本按照(一阶梯度)从小到大排序,通过遍历,查看每个节点是否需要分割,计算复杂度是:决策树叶子节点数 – 1。

LightGBM

由微软提出,主要用于解决 GDBT 在海量数据中遇到的问题,以便其可以更好更快地用于工业实践中,其相对 XGBoost 具有训练速度快、内存占用低的特点。

  • LightGBM与XGBoost相比,主要有以下几个优势:
    1)更快的训练速度
    2)更低的内存消耗
    3)更好的准确率
    4)分布式支持,可快速处理海量数据

  • LightGBM 的主要改进
    LightGBM与XGBoost相比,主要有以下几个改进:
    • 基于梯度的单边采样算法(Gradient-based One-Side Sampling, GOSS);
    • 互斥特征捆绑算法(Exclusive Feature Bundling, EFB);
    • 直方图算法( Histogram );
    • 基于最大深度的 Leaf-wise 的垂直生长算法;
    LightGBM = XGBoost + GOSS + EFB+ Histogram

基于梯度的单边采样算法(Gradient-based One-Side Sampling, GOSS)

主要思想是通过对样本采样的方法来减少计算目标函数增益时候的复杂度。
GOSS 算法保留了梯度大的样本,并对梯度小的样本进行随机抽样,为了不改变样本的数据分布,在计算增益时为梯度小的样本引入一个常数进行平衡。
如果一个样本的梯度很小,说明该样本的训练误差很小,或者说该样本已经得到了很好的训练(well-trained)。

  • 算法思想
    输入:训练数据,迭代步数d,大梯度数据的采样率a,小梯度数据的采样率b,损失函数和若学习器的类型(一般为决策树)
    输出:训练好的强学习器
    (1)根据样本点的梯度的绝对值对它们进行降序排序;
    (2)对排序后的结果选取前a*100%的样本生成一个大梯度样本点的子集;
    (3)对剩下的样本集合(1-a)*100%的样本,随机的选取b *(1-a)*100%个样本点,生成一个小梯度样本点的集合;
    (4)将大梯度样本和采样的小梯度样本合并;
    (5)将小梯度样本乘上一个权重系数1−𝑎𝑏 ;
    (6)使用上述的采样的样本,学习一个新的弱学习器;
    (7)不断地重复(1)~(6)步骤直到达到规定的迭代次数或者收敛为止。
    在这里插入图片描述

互斥特征捆绑算法(Exclusive Feature Bundling, EFB)

高维特征往往是稀疏的,而且特征间可能是相互排斥的(如两个特征不同时取非零值),如果两个特征并不完全互斥(如只有一部分情况下是不同时取非零值),可以用互斥率表示互斥程度。EFB算法指出如果将一些特征进行融合绑定,则可以降低特征数量。
论文给出特征合并算法,其关键在于原始特征能从合并的特征中分离出来
在这里插入图片描述

直方图算法

直方图算法的基本思想是将连续的特征离散化为𝑘个离散特征,同时构造一个宽度为𝑘的直方图用于统计信息(含有 𝑘 个 bin)。利用直方图算法我们无需遍历数据,只需要遍历 𝑘 个 bin 即可找到最佳分裂点。
在这里插入图片描述
在这里插入图片描述

  • 直方图加速
    在构建叶节点的直方图时,我们还可以通过父节点的直方图与相邻叶节点的直方图相减的方式构建,从而减少了一半的计算量。即:一个叶子节点的直方图可以由它的父亲节点的直方图与其兄弟的直方图做差得到。如节点分裂成两个时,右边叶子节点的直方图等于其父节点的直方图减去左边叶子节点的直方图。从而大大减少构建直方图的计算量
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1452480.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JDK8新增的时间

设计更合理,功能更丰富,使用更方便,都是不可变的对象,修改后会返回新的事件对象不会丢失最开始的时间,线程安全,能精确到毫秒、纳秒。 这三个类都有一个静态方法now():获取系统当前时间对应的该…

爬虫-华为云空间备忘录导出到docx-selenium控制浏览器行为-python数据处理

背景适用情况介绍 老的荣耀手机属于华为云系统,家里人换了新荣耀手机属于荣耀云系统无法通过云空间将备忘录转移到新手机,不想让他们一个一个搞,于是整了一晚上想办法爬取下来。从网页抓取下来,然后存到docx文档中(包…

不花一分钱,在 Mac 上跑 Windows(M1/M2 版)

这是在 MacOS M1 上体验最新 Windows11 的效果: VMware Fusion,可以运行 Windows、Linux 系统,个人使用 licence 免费 安装流程见 👉 https://zhuanlan.zhihu.com/p/452412091 从申请 Fusion licence 到下载镜像,再到…

phpstrom创建thinkphp项目

安装php和composer 参考 安装phpstrom 创建项目 查看thinkphp版本 https://packagist.org/packages/topthink/think 打开所在项目编辑配置 即可调试运行

软件工程师,超过35岁怎么办

概述 随着科技行业的飞速发展,软件开发工程师的职业道路充满了各种机遇和挑战。对于已经在这个行业摸爬滚打了十多年的软件开发工程师来说,当他们步入35岁这个年纪时,可能会感到一些迷茫和焦虑。许多人担忧,在以创新、活力、快速迭…

MongoDB从入门到实战之.NET Core使用MongoDB开发ToDoList系统(2)-Swagger框架集成

Swagger是什么? Swagger是一个规范且完整API文档管理框架,可以用于生成、描述和调用可视化的RESTful风格的 Web 服务。Swagger 的目标是对 REST API 定义一个标准且和语言无关的接口,可以让人和计算机拥有无须访问源码、文档或网络流量监测就…

MySQL篇之覆盖索引

一、定义 覆盖索引是指查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到。 二、例子 1. id为主键,默认是主键索引。 2. name字段为普通索引。 select * from tb_user where id 1 覆盖索引 select id,na…

Codeforces Round 486 (Div. 3)

目录 A. Diverse Team B. Substrings Sort C. Equal Sums D. Points and Powers of Two E. Divisibility by 25 F. Rain and Umbrellas A. Diverse Team 找出不重复的同时存下下标即可,依次遍历map判断重复最后判断数量即可 void solve(){cin>>n>>…

太炸了!Sora深夜发布!网友:我要失业了

2022年末,OpenAI聊天机器人ChatGPT的面世无疑成为了引领人工智能浪潮的标志性事件,宣告了新一轮科技革命的到来。无论是聊天娱乐、教育学习,还是工作生产、医疗健康等领域,人工智能正以前所未有的速度渗透到我们生活的方方面面。 …

ClickHouse--10--临时表、视图、向表中导入导出数据

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1.临时表1.1 特征1.2 创建一个临时表 2.视图2.1 普通视图2.2 物化视图 3.向表中导入导出数据3.1 案例 1.临时表 1.1 特征 ClickHouse 支持临时表,临时表…

【网站项目】154智能无人仓库管理

🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板&#xff…

【图论】2-SAT

参考资料:2-SAT学习笔记 什么是2-SAT问题呢? (a∨b∨c)∧(a∨b∨c)∧(a∨b∨c),给出一个类似于这样的式子,让你找出满足条件的一个解,这样的问题就是SAT问题,因为每一个括号内都有三个被限制的变量&#…

人工智能学习与实训笔记(七):神经网络之模型压缩与知识蒸馏

人工智能学习笔记汇总链接:人工智能学习与实训笔记汇总-CSDN博客 本篇目录 七、模型压缩与知识蒸馏 7.1 模型压缩 7.2 知识蒸馏 7.2.1 知识蒸馏的原理 7.2.2 知识蒸馏的种类 7.2.3 知识蒸馏的作用 七、模型压缩与知识蒸馏 出于对响应速度,存储大…

算法刷题:无重复字符的最长字串

无重复字符的最长字串 .题目链接题目详情算法原理题目解析滑动窗口定义指针进窗口判断出窗口更新结果 我的答案 . 题目链接 无重复字符的最长字串 题目详情 算法原理 题目解析 首先,为了使字符串遍历的更加方便,我们选择将字符串转换为数组 题目要求子串中不能有重复的字符…

MessageQueue --- RabbitMQ

MessageQueue --- RabbitMQ RabbitMQ IntroRabbitMQ 核心概念RabbitMQ 分发类型Dead letter (死信)保证消息的可靠传递 RabbitMQ Intro 2007年发布,是一个在AMQP(高级消息队列协议)基础上完成的,可复用的企业消息系统,…

Pandas:DataFrame的完整指南【第82篇—DataFrame】

Pandas:DataFrame的完整指南 Pandas是Python中最流行的数据处理库之一,而其中的DataFrame对象是数据处理的核心。DataFrame为我们提供了一个强大而灵活的数据结构,使得数据的清洗、分析和可视化变得更加简便。在本文中,我们将深入…

旅游出门千万别忘带这些!花的不多,享受翻倍!随身wifi看这篇,高性价比高口碑随身wifi推荐

春节长假,大家都去哪儿玩了呢?我反正带着我的小背包,走遍了祖国的大好河山! 得益于之前几次长假出行的经验,这次出行体验十分完美。除了详细完备的出行攻略,还有就是一些出行好物,虽然不起眼&am…

采购平台架构设计和实现的实战总结

当代企业日益重视采购管理的有效性和高效性,而采购平台的架构设计和实现则成为实现这一目标的关键。本文将探讨采购平台架构设计的重要性、关键原则以及实施过程中需要考虑的要点,帮助企业构建强大的采购平台,提升采购管理效率和效果。 ### 1…

在PyTorch中,如何查看深度学习模型的每一层结构?

这里写目录标题 1. 使用print(model)2. 使用torchsummary库3.其余方法(可以参考) 在PyTorch中,如果想查看深度学习模型的每一层结构,可以使用print(model)或者model.summary()(如果你使用的是torchsummary库&#xff0…

Arrays工具类的常见方法总结

一、Arrays.asList( ) 1、作用 Arrays.asList( )可以将一个数组以集合的形式传入一个集合对象。通常用来将一组元素全部添加到集合中。 2、参数及返回值 参数&#xff1a;一组动态参数 返回值&#xff1a;List<T>集合 3、应用举例 List<String> boyListArra…