并发编程(1)基础篇

news2024/11/26 4:46:02

1 概览

1.1 这门课讲什么

这门课中的【并发】一词涵盖了在 Java 平台上的

  • 进程
  • 线程
  • 并发
  • 并行

以及 Java 并发工具、并发问题以及解决方案,同时也会讲解一些其它领域的并发

1.2 为什么学这么课

  • 我工作中用不到并发啊?

那你还是没有接触到复杂项目.

你用的那些牛逼工具里有大量的多线程运用.

1.3 课程特色

本门课程以并发、并行为主线,穿插讲解

  • 应用 - 结合实际

  • 原理 - 了然于胸

  • 模式 - 正确姿势

image.png

image.png

1.4 预备知识

  • 希望你不是一个初学者

  • 线程安全问题,需要你接触过 Java Web 开发、Jdbc 开发、Web 服务器、分布式框架时才会遇到

  • 基于 JDK 8,最好对函数式编程、lambda 有一定了解

  • 采用了 slf4j 打印日志,这是好的实践

  • 采用了 lombok 简化 java bean 编写

  • 给每个线程好名字,这也是一项好的实践

pom.xml 依赖如下

<properties>
   <maven.compiler.source>1.8</maven.compiler.source>
   <maven.compiler.target>1.8</maven.compiler.target>
</properties>

<dependencies>
	<dependency>
        <groupId>org.projectlombok</groupId>
		<artifactId>lombok</artifactId>
		<version>1.18.10</version>
  	</dependency>
    <dependency>
		<groupId>ch.qos.logback</groupId>
		<artifactId>logback-classic</artifactId>
		<version>1.2.3</version>
   </dependency>
</dependencies>

logback.xml 配置如下

<?xml version="1.0" encoding="UTF-8"?>
<configuration
        xmlns="http://ch.qos.logback/xml/ns/logback"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://ch.qos.logback/xml/ns/logback logback.xsd">
    <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
        <encoder>
            <pattern>%date{HH:mm:ss} [%t] %logger - %m%n</pattern>
        </encoder>
    </appender>
    <logger name="c" level="debug" additivity="false">
        <appender-ref ref="STDOUT"/>
    </logger>
    <root level="ERROR">
        <appender-ref ref="STDOUT"/>
    </root>
</configuration>

2 进程与线程

本章内容

  • 进程和线程的概念

  • 并行和并发的概念

  • 线程基本应用

2.1 进程与线程

进程

  • 程序由指令和数据组成,但这些指令要运行,数据要读写,就必须将指令加载至 CPU,数据加载至内存。在指令运行过程中还需要用到磁盘、网络等设备。进程就是用来加载指令、管理内存、管理 IO 的

  • 当一个程序被运行,从磁盘加载这个程序的代码至内存,这时就开启了一个进程。

  • 进程就可以视为程序的一个实例。大部分程序可以同时运行多个实例进程(例如记事本、画图、浏览器等),也有的程序只能启动一个实例进程(例如网易云音乐、360 安全卫士等)

线程

  • 一个进程之内可以分为一到多个线程。

  • 一个线程就是一个指令流,将指令流中的一条条指令以一定的顺序交给 CPU 执行

  • Java 中,线程作为最小调度单位,进程作为资源分配的最小单位。 在 windows 中进程是不活动的,只是作为线程的容器

二者对比

  • 进程基本上相互独立的,而线程存在于进程内,是进程的一个子集

  • 进程拥有共享的资源,如内存空间等,供其内部的线程共享

  • 进程间通信较为复杂

    • 同一台计算机的进程通信称为 IPC(Inter-process communication)
    • 不同计算机之间的进程通信,需要通过网络,并遵守共同的协议,例如 HTTP
  • 线程通信相对简单,因为它们共享进程内的内存,一个例子是多个线程可以访问同一个共享变量

  • 线程更轻量,线程上下文切换成本一般上要比进程上下文切换低

2.2 并行与并发

单核cpu下,线程实际还是串行执行的。操作系统中有一个组件叫做任务调度器,将cpu的时间片(windows 下时间片最小约为15毫秒)分给不同的程序使用,只是由于cpu在线程间(时间片很短)的切换非常快,人类感觉是同时运行的。总结为一句话就是:微观串行,宏观并行, 一般会将这种线程轮流使用CPU的做法称为并发(concurrent)

image.png

image.png

多核cpu下,每个核(core)都可以调度运行线程,这时候线程可以是并行的。

image.png

image.png

引用 Rob Pike 的一段描述:

  • 并发(concurrent)是同一时间应对(dealing with)多件事情的能力

  • 并行(parallel)是同一时间动手做(doing)多件事情的能力

例子:

  • 家庭主妇做饭、打扫卫生、给孩子喂奶,她一个人轮流交替做这多件事,这时就是并发

  • 家庭主妇雇了个保姆,她们一起这些事,这时既有并发,也有并行(这时会产生竞争,例如锅只有一口,一 个人用锅时,另一个人就得等待)

  • 雇了3个保姆,一个专做饭、一个专打扫卫生、一个专喂奶,互不干扰,这时是并行

Rob Pike 资料
●golang 语言的创造者
●[Rob Pike - 百度百科](https://baike.baidu.com/item/罗布·派克/10983505?fromtitle=Rob Pike&fromid=58101861&fr=aladdin)

2.3 应用

应用之异步调用(案例1)

以调用方角度来讲,如果

  • 需要等待结果返回,才能继续运行就是同步

  • 不需要等待结果返回,就能继续运行就是异步

  1. 设计

    多线程可以让方法执行变为异步的(即不要巴巴干等着)比如说读取磁盘文件时,假设读取操作花费了 5 秒钟,如果没有线程调度机制,这 5 秒 cpu 什么都做不了,其它代码都得暂停…

  1. 结论
  • 比如在项目中,视频文件需要转换格式等操作比较费时,这时开一个新线程处理视频转换,避免阻塞主线程

  • tomcat 的异步 servlet 也是类似的目的,让用户线程处理耗时较长的操作,避免阻塞 tomcat 的工作线程

  • ui程序中,开线程进行其他操作,避免阻塞ui线程

应用之提高效率(案例1)

充分利用多核 cpu 的优势,提高运行效率。想象下面的场景,执行 3 个计算,最后将计算结果汇总。

计算 1 花费 10 ms
计算 2 花费 11 ms
计算 3 花费 9 ms
汇总需要 1 ms
  • 如果是串行执行,那么总共花费的时间是 10 + 11 + 9 + 1 = 31ms

  • 但如果是四核 cpu,各个核心分别使用线程 1 执行计算 1,线程 2 执行计算 2,线程 3 执行计算 3,那么 3 个 线程是并行的,花费时间只取决于最长的那个线程运行的时间,即11ms最后加上汇总时间只会花费12ms

注意
需要在多核 cpu 才能提高效率,单核仍然时是轮流执行

  1. 设计

>>>>> 代码见【应用之效率-案例1】<<<<<

  1. 结论
  • 单核 cpu 下,多线程不能实际提高程序运行效率,只是为了能够在不同的任务之间切换,不同线程轮流使用 cpu ,不至于一个线程总占用 cpu,别的线程没法干活

  • 多核 cpu 可以并行跑多个线程,但能否提高程序运行效率还是要分情况的

    • 有些任务,经过精心设计,将任务拆分,并行执行,当然可以提高程序的运行效率。但不是所有计算任务都能拆分(参考后文的【阿姆达尔定律】)
    • 也不是所有任务都需要拆分,任务的目的如果不同,谈拆分和效率没啥意义
  • IO 操作不占用 cpu,只是我们一般拷贝文件使用的是【阻塞 IO】,这时相当于线程虽然不用 cpu,但需要一 直等待 IO 结束,没能充分利用线程。所以才有后面的【非阻塞 IO】和【异步 IO】优化

3 Java 线程

本章内容

  • 创建和运行线程

  • 查看线程

  • 线程 API

  • 线程状态

3.1 创建和运行线程

方法一,直接使用 Thread

// 创建线程对象
Thread t = new Thread() {
    public void run() {
        // 要执行的任务
    }
};
// 启动线程
t.start();

例如:

// 构造方法的参数是给线程指定名字,推荐
Thread t1 = new Thread("t1") {
    @Override
    // run 方法内实现了要执行的任务
    public void run() {
        log.debug("hello");
    }
};
t1.start();

输出:

19:19:00 [t1] c.ThreadStarter - hello

方法二,使用 Runnable 配合 Thread

把【线程】和【任务】(要执行的代码)分开

  • Thread 代表线程

  • Runnable 可运行的任务(线程要执行的代码)

Runnable runnable = new Runnable() {
    public void run(){
        // 要执行的任务
    }
};
// 创建线程对象
Thread t = new Thread( runnable );
// 启动线程
t.start();

例如:

// 创建任务对象
Runnable task2 = new Runnable() {
    @Override
    public void run() {
        log.debug("hello");
    }
};

// 参数1 是任务对象; 参数2 是线程名字,推荐
Thread t2 = new Thread(task2, "t2");
t2.start();

输出:

19:19:00 [t2] c.ThreadStarter - hello

Java 8 以后可以使用 lambda 精简代码

// 创建任务对象
Runnable task2 = () -> log.debug("hello");

// 参数1 是任务对象; 参数2 是线程名字,推荐
Thread t2 = new Thread(task2, "t2");
t2.start();

原理之 Thread 与 Runnable 的关系

分析 Thread 的源码,理清它与 Runnable 的关系

private Runnable target;

@Override
public void run() {
    if (target != null) {
        target.run();
    }
}

小结

  • 方法1是把线程和任务合并在了一起,方法2是把线程和任务分开了

  • 用 Runnable 更容易与线程池等高级 API 配合

  • 用 Runnable 让任务类脱离了 Thread 继承体系,更灵活

方法三,FutureTask 配合 Thread

FutureTask 能够接收 Callable 类型的参数,用来处理有返回结果的情况

// 创建任务对象
FutureTask<Integer> task3 = new FutureTask<>(() -> {
    log.debug("hello");
    return 100;
});

// 参数1 是任务对象; 参数2 是线程名字,推荐
new Thread(task3, "t3").start();

// 主线程阻塞,同步等待 task 执行完毕的结果
Integer result = task3.get();
log.debug("结果是:{}", result);

输出:

19:22:27 [t3] c.ThreadStarter - hello
19:22:27 [main] c.ThreadStarter - 结果是:100

3.2 观察多个线程同时运行

主要是理解

  • 交替执行

  • 谁先谁后,不由我们控制

3.3 查看进程线程的方法

windows

  • 任务管理器可以查看进程和线程数,也可以用来杀死进程

  • tasklist 查看进程

  • taskkill 杀死进程

linux

  • ps -fe查看所有进程

  • ps -fT -p <PID> 查看某个进程(PID)的所有线程

  • kill杀死进程

  • top 按大写 H 切换是否显示线程

  • top -H -p <PID> 查看某个进程(PID)的所有线程

Java

  • jps 命令查看所有 Java 进程

  • jstack <PID> 查看某个 Java 进程(PID)的所有线程状态

  • jconsole 来查看某个 Java 进程中线程的运行情况(图形界面)

jconsole 远程监控配置

  • 需要以如下方式运行你的 java 类
java -Djava.rmi.server.hostname=`ip地址` -Dcom.sun.management.jmxremote -
Dcom.sun.management.jmxremote.port=`连接端口` -Dcom.sun.management.jmxremote.ssl=是否安全连接 -
Dcom.sun.management.jmxremote.authenticate=是否认证 java类
  • 修改 /etc/hosts 文件将 127.0.0.1 映射至主机名

如果要认证访问,还需要做如下步骤

  • 复制 jmxremote.password 文件

  • 修改 jmxremote.password 和 jmxremote.access 文件的权限为 600 即文件所有者可读写

  • 连接时填入 controlRole(用户名),R&D(密码)

3.4 原理之线程运行

栈与栈帧

Java Virtual Machine Stacks (Java 虚拟机栈)

我们都知道 JVM 中由堆、栈、方法区所组成,其中栈内存是给谁用的呢?其实就是线程,每个线程启动后,虚拟机就会为其分配一块栈内存。

  • 每个栈由多个栈帧(Frame)组成,对应着每次方法调用时所占用的内存

  • 每个线程只能有一个活动栈帧,对应着当前正在执行的那个方法

线程上下文切换(Thread Context Switch)

因为以下一些原因导致 cpu 不再执行当前的线程,转而执行另一个线程的代码

  • 线程的 cpu 时间片用完

  • 垃圾回收

  • 有更高优先级的线程需要运行

  • 线程自己调用了 sleep、yield、wait、join、park、synchronized、lock 等方法

当 Context Switch 发生时,需要由操作系统保存当前线程的状态,并恢复另一个线程的状态,Java 中对应的概念就是程序计数器(Program Counter Register),它的作用是记住下一条 jvm 指令的执行地址,是线程私有的

  • 状态包括程序计数器、虚拟机栈中每个栈帧的信息,如局部变量、操作数栈、返回地址等

  • Context Switch 频繁发生会影响性能

3.5 常见方法

方法名static功能说明注意
start()启动一个新线程,在新的线程运行 run 方法中的代码start 方法只是让线程进入就绪,里面代码不一定立刻运行(CPU 的时间片还没分给它)。每个线程对象的start方法只能调用一次,如果调用了多次会出现 IllegalThreadStateException
run()新线程启动后会调用的方法如果在构造 Thread 对象时传递了 Runnable 参数,则线程启动后会调用 Runnable 中的 run 方法,否则默认不执行任何操作。但可以创建 Thread 的子类对象, 来覆盖默认行为
join()等待线程运行结束
join(long n)等待线程运行结束,最多等待n毫秒
getId()获取线程长整型的idid唯一
getName()获取线程名
setName(String)修改线程名
getPriority()获取线程优先级
setPriority(int)修改线程优先级java中规定线程优先级是1~10的整数,较大的优先级能提高该线程被 CPU 调度的几率
getState()获取线程状态Java 中线程状态是用 6 个 enum 表示,分别为:NEW, RUNNABLE, BLOCKED, WAITING, TIMED_WAITING, TERMINATED
isInterrupted()判断是否被打断不会清除 打断标记
isAlive()线程是否存活(还没有运行完毕)
interrupt()打断线程如果被打断线程正在 sleep,wait,join 会导致被打断的线程抛出InterruptedException,并清除 打断标记 ;如果打断的正在运行的线程,则会设置 打断标记 ;park 的线程被打断,也会设置 打断标记
interrupted()static判断当前线程是否被打断会清除 打断标记
currentThread()static获取当前正在执行的线程
sleep(long n)static让当前执行的线程休眠n毫秒,休眠时让出 cpu 的时间片给其它线程
yield()static提示线程调度器让出当前线程对 CPU 的使用主要是为了测试和调试

3.6 start 与 run

调用 run

public static void main(String[] args) {
    Thread t1 = new Thread("t1") {
        @Override
        public void run() {
            log.debug(Thread.currentThread().getName());
            FileReader.read(Constants.MP4_FULL_PATH);
        }
    };
    
    t1.run();
    log.debug("do other things ...");
}

输出:

19:39:14 [main] c.TestStart - main
19:39:14 [main] c.FileReader - read [1.mp4] start ...
19:39:18 [main] c.FileReader - read [1.mp4] end ... cost: 4227 ms
19:39:18 [main] c.TestStart - do other things ...

程序仍在 main 线程运行, FileReader.read() 方法调用还是同步的.

调用 start

将上述代码的 t1.run(); 改为 t1.start();

输出:

19:41:30 [main] c.TestStart - do other things ...
19:41:30 [t1] c.TestStart - t1
19:41:30 [t1] c.FileReader - read [1.mp4] start ...
19:41:35 [t1] c.FileReader - read [1.mp4] end ... cost: 4542 ms

程序在 t1 线程运行, FileReader.read() 方法调用是异步的

小结

  • 直接调用 run 是在主线程中执行了 run,没有启动新的线程

  • 使用 start 是启动新的线程,通过新的线程间接执行 run 中的代码

3.7 sleep 与 yield

sleep

  1. 调用 sleep 会让当前线程从 Running 进入 Timed Waiting 状态(阻塞)
  2. 其它线程可以使用 interrupt 方法打断正在睡眠的线程,这时 sleep 方法会抛出 InterruptedException
  3. 睡眠结束后的线程未必会立刻得到执行
  4. 建议用 TimeUnit 的 sleep 代替 Thread 的 sleep 来获得更好的可读性

yield

  1. 调用 yield 会让当前线程从 Running 进入 Runnable 就绪状态,然后调度执行其它线程
  2. 具体的实现依赖于操作系统的任务调度器

线程优先级

  • 线程优先级会提示(hint)调度器优先调度该线程,但它仅仅是一个提示,调度器可以忽略它

  • 如果 cpu 比较忙,那么优先级高的线程会获得更多的时间片,但 cpu 闲时,优先级几乎没作用

Runnable task1 = () -> {
    int count = 0;
    for (;;) {
        System.out.println("---->1 " + count++);
    }
};
Runnable task2 = () -> {
    int count = 0;
    for (;;) {
        // Thread.yield();
        System.out.println(" ---->2 " + count++);
    }
};
Thread t1 = new Thread(task1, "t1");
Thread t2 = new Thread(task2, "t2");
// t1.setPriority(Thread.MIN_PRIORITY);
// t2.setPriority(Thread.MAX_PRIORITY);
t1.start();
t2.start();

应用: 限制-1.限制对CPU的使用

sleep 实现

在没有利用 cpu 来计算时,不要让 while(true) 空转浪费 cpu,这时可以使用 yield 或 sleep 来让出 cpu 的使用权 给其他程序

while(true) {
    try {
        Thread.sleep(50);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
}
  • 可以用 wait 或 条件变量达到类似的效果

  • 不同的是,后两种都需要加锁,并且需要相应的唤醒操作,一般适用于要进行同步的场景

  • sleep 适用于无需锁同步的场景

wait实现

synchronized(锁对象) {
    while(条件不满足) {
        try {
            锁对象.wait();
        } catch(InterruptedException e) {
            e.printStackTrace();
        }
    }
    // do sth...
}

条件变量实现

lock.lock();
try {
    while(条件不满足) {
        try {
            条件变量.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
    // do sth...
} finally {
    lock.unlock();
}

3.8 join方法详解

为什么需要 join

下面的代码执行,打印 r 是什么?

static int r = 0;
public static void main(String[] args) throws InterruptedException {
    test1();
}

private static void test1() throws InterruptedException {
    log.debug("开始");
    Thread t1 = new Thread(() -> {
        log.debug("开始");
        sleep(1);
        log.debug("结束");
        r = 10;
    });
    t1.start();
    log.debug("结果为:{}", r);
    log.debug("结束");
}

分析

  • 因为主线程和线程 t1 是并行执行的,t1 线程需要 1 秒之后才能算出 r=10

  • 而主线程一开始就要打印 r 的结果,所以只能打印出 r=0

解决方法

  • 用 sleep 行不行?为什么?

  • 用 join,加在 t1.start() 之后即可

应用之同步(案例1)

以调用方角度来讲,如果

  • 需要等待结果返回,才能继续运行就是同步

  • 不需要等待结果返回,就能继续运行就是异步

    image-20240216172224481

等待多个结果

问,下面代码 cost 大约多少秒?

static int r1 = 0;
static int r2 = 0;
public static void main(String[] args) throws InterruptedException {
    test2();
}
private static void test2() throws InterruptedException {
    Thread t1 = new Thread(() -> {
        sleep(1);
        r1 = 10;
    });
    Thread t2 = new Thread(() -> {
        sleep(2);
        r2 = 20;
    });
    long start = System.currentTimeMillis();
    t1.start();
    t2.start();
    t1.join();
    t2.join();
    long end = System.currentTimeMillis();
    log.debug("r1: {} r2: {} cost: {}", r1, r2, end - start);
}

分析如下

  • 第一个 join:等待 t1 时, t2 并没有停止, 而在运行

  • 第二个 join:1s 后, 执行到此, t2 也运行了 1s, 因此也只需再等待 1s

如果颠倒两个 join 呢?

最终都是输出

20:45:43.239 [main] c.TestJoin - r1: 10 r2: 20 cost: 2005

image-20240216172352229

有时效的join

等够时间

static int r1 = 0;
static int r2 = 0;
public static void main(String[] args) throws InterruptedException {
    test3();
}
public static void test3() throws InterruptedException {
    Thread t1 = new Thread(() -> {
        sleep(1);
        r1 = 10;
    });
    long start = System.currentTimeMillis();
    t1.start();
    // 线程执行结束会导致 join 结束
    t1.join(1500);
    long end = System.currentTimeMillis();
    log.debug("r1: {} r2: {} cost: {}", r1, r2, end - start);
}

输出

20:48:01.320 [main] c.TestJoin - r1: 10 r2: 0 cost: 1010

没等够时间

static int r1 = 0;
static int r2 = 0;
public static void main(String[] args) throws InterruptedException {
    test3();
}
public static void test3() throws InterruptedException {
    Thread t1 = new Thread(() -> {
        sleep(2);
        r1 = 10;
    });
    long start = System.currentTimeMillis();
    t1.start();
    // 线程执行结束会导致 join 结束
    t1.join(1500);
    long end = System.currentTimeMillis();
    log.debug("r1: {} r2: {} cost: {}", r1, r2, end - start);
}

输出

20:52:15.623 [main] c.TestJoin - r1: 0 r2: 0 cost: 1502

3.9 interrupt 方法详解

打断 sleep,wait,join 的线程

这几个方法都会让线程进入阻塞状态

打断 sleep 的线程, 会清空打断状态,以 sleep 为例

private static void test1() throws InterruptedException {
    Thread t1 = new Thread(()->{
        sleep(1);
    }, "t1");
    t1.start();
    sleep(0.5);
    t1.interrupt();
    log.debug(" 打断状态: {}", t1.isInterrupted());
}

输出

java.lang.InterruptedException: sleep interrupted
     at java.lang.Thread.sleep(Native Method)
     at java.lang.Thread.sleep(Thread.java:340)
     at java.util.concurrent.TimeUnit.sleep(TimeUnit.java:386)
     at cn.itcast.n2.util.Sleeper.sleep(Sleeper.java:8)
     at cn.itcast.n4.TestInterrupt.lambda$test1$3(TestInterrupt.java:59)
     at java.lang.Thread.run(Thread.java:745)
21:18:10.374 [main] c.TestInterrupt - 打断状态: false

打断正常运行的线程

打断正常运行的线程, 不会清空打断状态

private static void test2() throws InterruptedException {
    Thread t2 = new Thread(()->{
        while(true) {
            Thread current = Thread.currentThread();
            boolean interrupted = current.isInterrupted();
            if(interrupted) {
                log.debug(" 打断状态: {}", interrupted);
                break;
            }
        }
    }, "t2");
    t2.start();
    sleep(0.5);
    t2.interrupt();
}

输出

20:57:37.964 [t2] c.TestInterrupt - 打断状态: true 

模式之两阶段终止

Two Phase Termination

在一个线程 T1 中如何“优雅”终止线程 T2?这里的【优雅】指的是给 T2 一个料理后事的机会。

  1. 错误思路
  • 使用线程对象的 stop() 方法停止线程

    • stop 方法会真正杀死线程,如果这时线程锁住了共享资源,那么当它被杀死后就再也没有机会释放锁,其它线程将永远无法获取锁
  • 使用 System.exit(int) 方法停止线程

    • 目的仅是停止一个线程,但这种做法会让整个程序都停止
  1. 两阶段终止模式

image.png

  • 利用 isInterrupted

​ interrupt 可以打断正在执行的线程,无论这个线程是在 sleep,wait,还是正常运行

class TPTInterrupt {
    private Thread thread;
    public void start(){
        thread = new Thread(() -> {
            while(true) {
                Thread current = Thread.currentThread();
                if(current.isInterrupted()) {
                    log.debug("料理后事");
                    break;
                }
                try {
                    Thread.sleep(1000);
                    log.debug("将结果保存");
                } catch (InterruptedException e) {
                    current.interrupt();
                }
                // 执行监控操作 
            }
        },"监控线程");
        thread.start();
    }
    public void stop() {
        thread.interrupt();
    }
}

调用

TPTInterrupt t = new TPTInterrupt();
t.start();

Thread.sleep(3500);
log.debug("stop");
t.stop();

结果

11:49:42.915 c.TwoPhaseTermination [监控线程] - 将结果保存
11:49:43.919 c.TwoPhaseTermination [监控线程] - 将结果保存
11:49:44.919 c.TwoPhaseTermination [监控线程] - 将结果保存
11:49:45.413 c.TestTwoPhaseTermination [main] - stop 
11:49:45.413 c.TwoPhaseTermination [监控线程] - 料理后事
  • 利用停止标记
// 停止标记用 volatile 是为了保证该变量在多个线程之间的可见性
// 我们的例子中,即主线程把它修改为 true 对 t1 线程可见
class TPTVolatile {
    private Thread thread;
    private volatile boolean stop = false;
    
    public void start(){
        thread = new Thread(() -> {
            while(true) {
                //Thread current = Thread.currentThread();
                if(stop) {
                    log.debug("料理后事");
                    break;
                }
                try {
                    Thread.sleep(1000);
                    log.debug("将结果保存");
                } catch (InterruptedException e) {

                }
                // 执行监控操作
            }
        },"监控线程");
        thread.start();
    }
    
    public void stop() {
        stop = true;
        thread.interrupt();
    }
}

调用

TPTVolatile t = new TPTVolatile();
t.start();

Thread.sleep(3500);
log.debug("stop");
t.stop();

结果

11:54:52.003 c.TPTVolatile [监控线程] - 将结果保存
11:54:53.006 c.TPTVolatile [监控线程] - 将结果保存
11:54:54.007 c.TPTVolatile [监控线程] - 将结果保存
11:54:54.502 c.TestTwoPhaseTermination [main] - stop 
11:54:54.502 c.TPTVolatile [监控线程] - 料理后事

打断 park 线程

打断 park 线程, 不会清空打断状态

private static void test3() throws InterruptedException {
    Thread t1 = new Thread(() -> {
        log.debug("park...");
        LockSupport.park();
        log.debug("unpark...");
        log.debug("打断状态:{}", Thread.currentThread().isInterrupted());
    }, "t1");
    t1.start();
    sleep(0.5);
    t1.interrupt();
}

输出

21:11:52.795 [t1] c.TestInterrupt - park... 
21:11:53.295 [t1] c.TestInterrupt - unpark... 
21:11:53.295 [t1] c.TestInterrupt - 打断状态:true

如果打断标记已经是 true, 则 park 会失效

private static void test4() {
    Thread t1 = new Thread(() -> {
        for (int i = 0; i < 5; i++) {
            log.debug("park...");
            LockSupport.park();
            log.debug("打断状态:{}", Thread.currentThread().isInterrupted());
        }
    });
    t1.start();
    sleep(1);
    t1.interrupt();
}

输出

21:13:48.783 [Thread-0] c.TestInterrupt - park... 
21:13:49.809 [Thread-0] c.TestInterrupt - 打断状态:true 
21:13:49.812 [Thread-0] c.TestInterrupt - park... 
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true 
21:13:49.813 [Thread-0] c.TestInterrupt - park... 
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true 
21:13:49.813 [Thread-0] c.TestInterrupt - park... 
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true 
21:13:49.813 [Thread-0] c.TestInterrupt - park... 
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true

提示
可以使用 Thread.interrupted() 清除打断状态

3.10 不推荐的方法

还有一些不推荐使用的方法,这些方法已过时,容易破坏同步代码块,造成线程死锁

方法名static功能说明
stop()停止线程运行
suspend()挂起(暂停)线程运行
resume()恢复线程运行

3.11 主线程与守护线程

默认情况下,Java 进程需要等待所有线程都运行结束,才会结束。有一种特殊的线程叫做守护线程,只要其它非守护线程运行结束了,即使守护线程的代码没有执行完,也会强制结束。

log.debug("开始运行...");
Thread t1 = new Thread(() -> {
log.debug("开始运行...");
sleep(2);
log.debug("运行结束...");
}, "daemon");
// 设置该线程为守护线程
t1.setDaemon(true);
t1.start();

sleep(1);
log.debug("运行结束...");

输出

08:26:38.123 [main] c.TestDaemon - 开始运行... 
08:26:38.213 [daemon] c.TestDaemon - 开始运行... 
08:26:39.215 [main] c.TestDaemon - 运行结束...

注意

  • 垃圾回收器线程就是一种守护线程
  • Tomcat 中的 Acceptor 和 Poller 线程都是守护线程,所以 Tomcat 接收到 shutdown 命令后,不会等待它们处理完当前请求

3.12 五种状态

这是从 操作系统 层面来描述的

image.png

  • 【初始状态】仅是在语言层面创建了线程对象,还未与操作系统线程关联
  • 【可运行状态】(就绪状态)指该线程已经被创建(与操作系统线程关联),可以由 CPU 调度执行
  • 【运行状态】指获取了 CPU 时间片运行中的状态
    • 当 CPU 时间片用完,会从【运行状态】转换至【可运行状态】,会导致线程的上下文切换
  • 【阻塞状态】
    • 如果调用了阻塞 API,如 BIO 读写文件,这时该线程实际不会用到 CPU,会导致线程上下文切换,进入【阻塞状态】
    • 等 BIO 操作完毕,会由操作系统唤醒阻塞的线程,转换至【可运行状态】
    • 与【可运行状态】的区别是,对【阻塞状态】的线程来说只要它们一直不唤醒,调度器就一直不会考虑调度它们
  • 【终止状态】表示线程已经执行完毕,生命周期已经结束,不会再转换为其它状态

3.13 六种状态

这是从 Java API 层面来描述的

根据 Thread.State 枚举,分为六种状态

image.png

  • NEW线程刚被创建,但是还没有调用 start() 方法
  • RUNNABLE 当调用了 start() 方法之后,注意,Java API 层面的 RUNNABLE 状态涵盖了 操作系统 层面的【可运行状态】、【运行状态】和【阻塞状态】(由于 BIO 导致的线程阻塞,在 Java 里无法区分,仍然认为是可运行)
  • BLOCKEDWAITINGTIMED_WAITING 都是 Java API 层面对【阻塞状态】的细分,后面会在状态转换一节详述
  • TERMINATED 当线程代码运行结束

3.14 习题

阅读华罗庚《统筹方法》,给出烧水泡茶的多线程解决方案,提示

  • 参考图二,用两个线程(两个人协作)模拟烧水泡茶过程

    • 文中办法乙、丙都相当于任务串行
    • 而图一相当于启动了 4 个线程,有点浪费
  • 用 sleep(n) 模拟洗茶壶、洗水壶等耗费的时间

附:华罗庚《统筹方法》

统筹方法,是一种安排工作进程的数学方法。它的实用范围极广泛,在企业管理和基本建设中,以及关系复杂的科研项目的组织与管理中,都可以应用。

怎样应用呢?主要是把工序安排好。

比如,想泡壶茶喝。当时的情况是:开水没有;水壶要洗,茶壶、茶杯要洗;火已生了,茶叶也有了。怎么办?

  • 办法甲:洗好水壶,灌上凉水,放在火上;在等待水开的时间里,洗茶壶、洗茶杯、拿茶叶;等水开了,泡茶喝。
  • 办法乙:先做好一些准备工作,洗水壶,洗茶壶茶杯,拿茶叶;一切就绪,灌水烧水;坐待水开了,泡茶喝。
  • 办法丙:洗净水壶,灌上凉水,放在火上,坐待水开;水开了之后,急急忙忙找茶叶,洗茶壶茶杯,泡茶喝。

哪一种办法省时间?我们能一眼看出,第一种办法好,后两种办法都窝了工。

这是小事,但这是引子,可以引出生产管理等方面有用的方法来。

水壶不洗,不能烧开水,因而洗水壶是烧开水的前提。没开水、没茶叶、不洗茶壶茶杯,就不能泡茶,因而这些又是泡茶的前提。它们的相互关系,可以用下边的箭头图来表示:
在这里插入图片描述

从这个图上可以一眼看出,办法甲总共要16分钟(而办法乙、丙需要20分钟)。如果要缩短工时、提高工作效率,应当主要抓烧开水这个环节,而不是抓拿茶叶等环节。同时,洗茶壶茶杯、拿茶叶总共不过4分钟,大可利用“等水开”的时间来做。

是的,这好像是废话,卑之无甚高论。有如走路要用两条腿走,吃饭要一口一口吃,这些道理谁都懂得。但稍有变化,临事而迷的情况,常常是存在的。在近代工业的错综复杂的工艺过程中,往往就不是像泡茶喝这么简单了。任务多了,几百几千,甚至有好几万个任务。关系多了,错综复杂,千头万绪,往往出现“万事俱备,只欠东风”的情况。由于一两个零件没完成,耽误了一台复杂机器的出厂时间。或往往因为抓的不是关键,连夜三班,急急忙忙,完成这一环节之后,还得等待旁的环节才能装配。

洗茶壶,洗茶杯,拿茶叶,或先或后,关系不大,而且同是一个人的活儿,因而可以合并成为:image.png

看来这是“小题大做”,但在工作环节太多的时候,这样做就非常必要了。

这里讲的主要是时间方面的事,但在具体生产实践中,还有其他方面的许多事。这种方法虽然不一定能直接解决所有问题,但是,我们利用这种方法来考虑问题,也是不无裨益的。

应用之统筹(烧水泡茶)

解法一: join

Thread t1 = new Thread(() -> {
    log.debug("洗水壶");
    sleep(1);
    log.debug("烧开水");
    sleep(15);
}, "老王");

Thread t2 = new Thread(() -> {
    log.debug("洗茶壶");
    sleep(1);
    log.debug("洗茶杯");
    sleep(2);
    log.debug("拿茶叶");
    sleep(1);
    try {
        t1.join();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    log.debug("泡茶");
}, "小王");

t1.start();
t2.start();

输出

19:19:37.547 [小王] c.TestMakeTea - 洗茶壶
19:19:37.547 [老王] c.TestMakeTea - 洗水壶
19:19:38.552 [小王] c.TestMakeTea - 洗茶杯
19:19:38.552 [老王] c.TestMakeTea - 烧开水
19:19:40.553 [小王] c.TestMakeTea - 拿茶叶
19:19:53.553 [小王] c.TestMakeTea - 泡茶

解法1 的缺陷:

  • 上面模拟的是小王等老王的水烧开了,小王泡茶,如果反过来要实现老王等小王的茶叶拿来了,老王泡茶呢?代码最好能适应两种情况

  • 上面的两个线程其实是各执行各的,如果要模拟老王把水壶交给小王泡茶,或模拟小王把茶叶交给老王泡茶呢?

解法二:wait/notify

class S2 {
    static String kettle = "冷水";
    static String tea = null;
    static final Object lock = new Object();
    static boolean maked = false;
    
    public static void makeTea() {
        
        new Thread(() -> {
            log.debug("洗水壶");
            sleep(1);
            log.debug("烧开水");
            sleep(5);
            synchronized (lock) {
                kettle = "开水";
                lock.notifyAll();
                while (tea == null) {
                    try {
                        lock.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                if (!maked) {
                    log.debug("拿({})泡({})", kettle, tea);
                    maked = true;
                }
            }
        }, "老王").start();
        
        new Thread(() -> {
            log.debug("洗茶壶");
            sleep(1);
            log.debug("洗茶杯");
            sleep(2);
            log.debug("拿茶叶");
            sleep(1);
            synchronized (lock) {
                tea = "花茶";
                lock.notifyAll();
                while (kettle.equals("冷水")) {
                    try {
                        lock.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                if (!maked) {
                    log.debug("拿({})泡({})", kettle, tea);
                    maked = true;
                }
            }
        }, "小王").start();
        
    }
}

输出

20:04:48.179 c.S2 [小王] - 洗茶壶
20:04:48.179 c.S2 [老王] - 洗水壶
20:04:49.185 c.S2 [老王] - 烧开水
20:04:49.185 c.S2 [小王] - 洗茶杯
20:04:51.185 c.S2 [小王] - 拿茶叶
20:04:54.185 c.S2 [老王] -(开水)(花茶)

解法2 解决了解法1 的问题,不过老王和小王需要相互等待,不如他们只负责各自的任务,泡茶交给第三人来做

解法三: 第三者协调

class S3 {
    
    static String kettle = "冷水";
    static String tea = null;
    static final Object lock = new Object();
    
    public static void makeTea() {
        
        new Thread(() -> {
            log.debug("洗水壶");
            sleep(1);
            log.debug("烧开水");
            sleep(5);
            synchronized (lock) {
                kettle = "开水";
                lock.notifyAll();
            }
        }, "老王").start();
        
        new Thread(() -> {
            log.debug("洗茶壶");
            sleep(1);
            log.debug("洗茶杯");
            sleep(2);
            log.debug("拿茶叶");
            sleep(1);
            synchronized (lock) {
                tea = "花茶";
                lock.notifyAll();
            }
        }, "小王").start();
        
        new Thread(() -> {
            synchronized (lock) {
                while (kettle.equals("冷水") || tea == null) {
                    try {
                        lock.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                log.debug("拿({})泡({})", kettle, tea);
            }
        }, "王夫人").start();
        
    }
}       

输出

20:13:18.202 c.S3 [小王] - 洗茶壶
20:13:18.202 c.S3 [老王] - 洗水壶
20:13:19.206 c.S3 [小王] - 洗茶杯
20:13:19.206 c.S3 [老王] - 烧开水
20:13:21.206 c.S3 [小王] - 拿茶叶
20:13:24.207 c.S3 [王夫人] -(开水)(花茶)

本章小结

本章的重点在于掌握

  • 线程创建

  • 线程重要 api,如 start,run,sleep,join,interrupt 等

  • 线程状态

  • 应用方面

    • 异步调用:主线程执行期间,其它线程异步执行耗时操作
    • 提高效率:并行计算,缩短运算时间
    • 同步等待:join
    • 统筹规划:合理使用线程,得到最优效果
  • 原理方面

    • 线程运行流程:栈、栈帧、上下文切换、程序计数器
    • Thread 两种创建方式的源码
  • 模式方面
    }
    }, “老王”).start();

      new Thread(() -> {
          log.debug("洗茶壶");
          sleep(1);
          log.debug("洗茶杯");
          sleep(2);
          log.debug("拿茶叶");
          sleep(1);
          synchronized (lock) {
              tea = "花茶";
              lock.notifyAll();
          }
      }, "小王").start();
      
      new Thread(() -> {
          synchronized (lock) {
              while (kettle.equals("冷水") || tea == null) {
                  try {
                      lock.wait();
                  } catch (InterruptedException e) {
                      e.printStackTrace();
                  }
              }
              log.debug("拿({})泡({})", kettle, tea);
          }
      }, "王夫人").start();
    

    }
    }


输出

```java
20:13:18.202 c.S3 [小王] - 洗茶壶
20:13:18.202 c.S3 [老王] - 洗水壶
20:13:19.206 c.S3 [小王] - 洗茶杯
20:13:19.206 c.S3 [老王] - 烧开水
20:13:21.206 c.S3 [小王] - 拿茶叶
20:13:24.207 c.S3 [王夫人] - 拿(开水)泡(花茶)

本章小结

本章的重点在于掌握

  • 线程创建

  • 线程重要 api,如 start,run,sleep,join,interrupt 等

  • 线程状态

  • 应用方面

    • 异步调用:主线程执行期间,其它线程异步执行耗时操作
    • 提高效率:并行计算,缩短运算时间
    • 同步等待:join
    • 统筹规划:合理使用线程,得到最优效果
  • 原理方面

    • 线程运行流程:栈、栈帧、上下文切换、程序计数器
    • Thread 两种创建方式的源码
  • 模式方面

    • 终止模式之两阶段终止

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1451318.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Python--网络编程之Ping命令的实现】

&#x1f680; 作者 &#xff1a;“码上有前” &#x1f680; 文章简介 &#xff1a;Python开发技术 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; Python网络编程之Ping命令的实现 往期内容代码见资源&#xff0c;效果图如下一、实验要求二、协…

【AIGC】Stable Diffusion 的提示词入门

一、正向提示词和反向提示词 Stable Diffusion 中的提示词通常用于指导用户对生成的图像进行控制。这些提示词可以分为正向提示词&#xff08;Positive Prompts&#xff09;和反向提示词&#xff08;Negative Prompts&#xff09;两类&#xff0c;它们分别影响图像生成过程中的…

嵌入式Qt Qt中的字符串类

一.Qt中的字符串类 QString vs string&#xff1a; QString在Qt库中几乎是无所不在的 所有的Qt图形用户组件都依赖于QString 实验1 &#xff1a;QString 初体验 #include <QDebug> void Sample_1() {QString s "add";s.append(" "); // &q…

函数递归与迭代附n的阶乘+顺序打印一个整数的每一位数+求第n个斐波那契数

1. 什么是递归&#xff1f; 递归其实是一种解决问题的方法&#xff0c;在C语言中&#xff0c;递归就是函数自己调用自己。 下面是一个最简单的C语言递归代码&#xff1a; #include <stdio.h> int main() {printf("hehe\n");main();//main函数中⼜调⽤了main函数…

linux进程控制【程序替换】

目录 前言&#xff1a; 1.替换原理 ​编辑 2.替换函数 2.1函数 execl 2.2函数 execv 2.3函数 execlp 2.4函数 execvp 2.5函数 execle 2.6函数 execve 2.7函数 execvpe 前言&#xff1a; 前面我们介绍了进程控制中的创建&#xff0c;退出等待&#xff0c;本章节我们将…

【VSCode】使用笔记

目录 快捷键系列 相关插件 相关文档链接 快捷键系列 调出终端 ctrl 或者是ctrlJ 结束进程 ctrlc 注释 ctrlkc 取消注释 ctrlku 上下移动代码 alt方向键 多行光标ctrlalt方向键 快速跳过某个单词 ctrl方向键 相关插件 1.每次修改后&#xff0c;自动保存启动项目 相…

家人们,比赛打完了

啊&#xff0c;终于打完一场比赛了&#xff0c;但还有三场…… 先看看我的战绩&#xff1a; 共八题&#xff0c;AC6题&#xff0c;总共3902分&#xff0c;3.7k人参加&#xff0c;第980名 来看看第一&#xff1a; A8题&#xff0c;我只有2题没做出&#xff0c;相差4000多分&am…

NLP_ChatGPT的RLHF实战

文章目录 介绍小结 介绍 ChatGPT 之所以成为ChatGPT&#xff0c;基于人类反馈的强化学习是其中重要的一环。而ChatGPT 的训练工程称得上是复杂而又神秘的&#xff0c;迄今为止&#xff0c;OpenAl也没有开源它的训练及调优的细节。 从 OpenAl已经公开的一部分信息推知&#xff…

H5 粒子特效引导页源码

H5 粒子特效引导页源码 源码介绍&#xff1a;一款粒子特效引导页源码&#xff0c;带彩色文字和4个按钮。 下载地址&#xff1a; https://www.changyouzuhao.cn/10222.html

比较不相交5点结构的顺序

( A, B )---6*30*2---( 1, 0 )( 0, 1 ) 让网络的输入只有6个节点&#xff0c;AB训练集各由6张二值化的图片组成&#xff0c;让差值结构有5个点&#xff0c;收敛误差7e-4&#xff0c;收敛199次&#xff0c;统计迭代次数平均值并排序。 如果行和列可以自由的变换&#xff0c;5个…

A. Desorting

链接 : Problem - A - Codeforces 题意 : 思路 : 先判断序列是否排好序 &#xff0c; 不是排好序的&#xff0c;直接输出0即可&#xff0c;排好序的 : 先求出相邻元素之间的最小间隔&#xff0c;因为&#xff0c;要使有序非递减序列&#xff0c;变得不排序&#xff0c;…

Python三级考试笔记

Python三级考试笔记【源源老师】 三级标准 一、 理解编码、数制的基本概念&#xff0c;并且会应用。 1. 能够进行二进制、十进制以及十六进制之间的转换&#xff1b; 2. 理解Python中的数制转换函数。 二、 掌握一维数据的表示和读写方法&#xff0c;能够编写程序处理一维数据…

高效货运 - 华为OD统一考试(C卷)

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 200分 题解&#xff1a; Java / Python / C 题目描述 老李是货运公司承运人&#xff0c;老李的货车额定载货重量为wt&#xff1b;现有两种货物&#xff0c;货物A单件重量为wa&#xff0c;单件运费利润为pa&#xff0c…

函数、极限、连续——刷题(3

目录 1.题目&#xff1a;2.解题思路和步骤&#xff1a;3.总结&#xff1a;小结&#xff1a; 1.题目&#xff1a; 2.解题思路和步骤&#xff1a; 3.总结&#xff1a; 首先还是考虑好所有情况&#xff08;所有情况见&#xff1a;函数、极限、连续——刷题&#xff08;1&#xff…

适用于Android 的 7 大短信恢复应用程序

对于 Android 用户来说&#xff0c;丢失重要的短信可能是一种令人沮丧的体验。幸运的是&#xff0c;有许多短信恢复应用程序可以帮助恢复丢失或删除的短信。在本文中&#xff0c;将与您分享 7 个最佳短信恢复应用程序&#xff0c;并帮助您找到可用于恢复已删除消息的最佳应用程…

机器学习分类评估四个术语TP,FP,FN,TN

分类评估方法主要功能是用来评估分类算法的好坏&#xff0c;而评估一个分类器算法的好坏又包括许多项指标。了解各种评估方法&#xff0c;在实际应用中选择正确的评估方法是十分重要的。 这里首先介绍几个常见的模型评价术语&#xff0c;现在假设我们的分类目标只有两类&#x…

LeetCode.107. 二叉树的层序遍历 II

题目 107. 二叉树的层序遍历 II 分析 这个题目考查的是二叉树的层序遍历&#xff0c;对于二叉树的层序遍历&#xff0c;我们需要借助 队列 这种数据结构。再来回归本题 &#xff0c;我们只需要将 二叉树的层序遍历的结果逆序&#xff0c;就可以得到这道题我们要求的答案了。…

交通管理|交通管理在线服务系统|基于Springboot的交通管理系统设计与实现(源码+数据库+文档)

交通管理在线服务系统目录 目录 基于Springboot的交通管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、用户信息管理 2、驾驶证业务管理 3、机动车业务管理 4、机动车业务类型管理 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计…

【BBuf的CUDA笔记】十四,OpenAI Triton入门笔记二

0x0. 前言 接着【BBuf的CUDA笔记】十三&#xff0c;OpenAI Triton 入门笔记一 继续探索和学习OpenAI Triton。这篇文章来探索使用Triton写LayerNorm/RMSNorm kernel的细节。 之前在 【BBuf的CUDA笔记】十二&#xff0c;LayerNorm/RMSNorm的重计算实现 这篇文章我啃过Apex的La…

HTTP 超文本传送协议

1 超文本传送协议 HTTP HTTP 是面向事务的 (transaction-oriented) 应用层协议。 使用 TCP 连接进行可靠的传送。 定义了浏览器与万维网服务器通信的格式和规则。 是万维网上能够可靠地交换文件&#xff08;包括文本、声音、图像等各种多媒体文件&#xff09;的重要基础。 H…