用Python动态展示排序算法

news2025/1/16 13:56:28

文章目录

    • 选择冒泡
    • 插入排序
    • 归并排序
    • 希尔排序

经常看到这种算法可视化的图片,但往往做不到和画图的人心灵相通,所以想自己画一下,本文主要实现归并排序和希尔排序,如果想实现其他算法可参考这篇

C语言实现各种排序算法[选择,冒泡,插入,归并,希尔,快排,堆排序,计数]

选择冒泡

这两种排序方案简单到很难说是什么算法,其中选择排序通过遍历一次数组,选出其中最大(小)的值放在新数组的第一位,再从剩下的数里选出最大(小)的,放到第二位,依次类推;冒泡排序则是通过重复走访要排序的数组,比较相邻元素,如果顺序不符合要求则交换位置,直到不需要交换为止。

选择排序冒泡排序
在这里插入图片描述在这里插入图片描述

二者的核心代码分别为:

#x为待排序列表,N=len(x)
#选择排序
for i in range(N):
    iMax = i
    for j in range(i, N):
        if(x[j]>x[iMax]):
            iMax = j
    x[iMax],x[i] = x[i],x[iMax]

#冒泡排序
tempN = N-1
for i in range(tempN):
    for j in range(0, tempN-i):
        if(x[j]>x[j+1]):
            x[j],x[j+1] = x[j+1],x[j]

下面给出选择排序的绘图代码,其他的所有排序算法,其实只需改变核心部分。

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation 

start,end,N = 10,100,9
x = np.random.randint(start, end, size=N)
Index = np.arange(N)
xs = []
nowIndex = []

for i in range(N):
    iMax = i
    for j in range(i, N):
        xs.append(x*1)      #存储当前顺序,用于绘图
        nowIndex.append([i,j,iMax]) #存储当前的i,j,max位置,用于绘图
        if(x[j]>x[iMax]):
            iMax = j
            xs.append(x*1)
            nowIndex.append([i,j,iMax])
    x[iMax],x[i] = x[i],x[iMax]

fig, ax = plt.subplots()
colors = np.repeat('g',N)
colors[0] = 'b'
bar = ax.bar(Index,x,color=colors)

def animate(n):
    data = xs[n]
    colors = np.repeat('gray',N)
    colors[nowIndex[n]] = 'b','g','r'
    ax.clear()
    bar = ax.bar(Index, data, color=colors)
    return bar

ani = animation.FuncAnimation(fig, animate, 
    range(len(xs)), interval=500, repeat=False, blit=True)
plt.show()
ani.save("sort.gif")

插入排序

插入排序的基本思路是将数组分为前后两个部分,前面有序,后面无序。逐个扫描无序数组,将每次扫描的数插入到有序数组中,从而有序数组越来越长,无序数组越来越短,直到整个数组都是有序的。

核心代码为

for i in range(1,N):
    j = i-1
    temp = x[i]
    while(x[i]<x[j] and j>=0):
        x[j+1] = x[j]
        j -= 1
    x[j+1] = temp

由于在这段代码中, x i x_i xi被取出放在旁边,所以其动态图中大部分时间会缺失一个值,在图中将其置于最右侧,其动态过程如图所示,蓝色表示抽出来准备插进去的那根bar

在这里插入图片描述

归并排序

排序算法到这里才算有点意思,归并排序是算法导论中介绍分治概念时提到的,基本思路是将数组拆分成子数组,然后令子数组有序,再令数组之间有序,从而整个数组有序。

算法步骤 \textbf{算法步骤} 算法步骤

设数组有 n n n个元素, { a 0 , a 1 , … , a n } \{a_0,a_1,\ldots,a_n\} {a0,a1,,an}

  1. 如果数组元素大于2,则将数组分成左数组和右数组,如果数组等于2,则将数组转成有序数组
  2. 对左数组和右数组执行1操作。
  3. 合并左数组和右数组。

可以发现,对长度为 n n n的数组,需要 log ⁡ 2 n \log_2n log2n次的拆分,每个拆分层级都有 O ( n ) O(n) O(n)的时间复杂度和 O ( n ) O(n) O(n)的空间复杂度,所以其时间复杂度和空间复杂度分别为 O ( n log ⁡ 2 n ) 和 O ( n ) O(n\log_2n)和O(n) O(nlog2n)O(n)

其核心算法为

def Merge(X, Y):
    nL,nR = len(X), len(Y)
    iterL,iterR = 0,0
    xNew = []
    for _ in range(nL+nR):
        if(iterL==nL): return xNew + Y[iterR:]
        if(iterR==nR): return xNew + X[iterL:]
        if(X[iterL]<Y[iterR]):
            xNew.append(X[iterL])
            iterL += 1
        else:
            xNew.append(Y[iterR])
            iterR += 1
    return xNew

def MergeSort(x):
    if len(x)==1:
        return x
    if len(x)==2:
        return x if x[0]<x[1] else [x[1],x[0]]
    nL = len(x)//2
    return Merge(MergeSort(x[:nL]),
                 MergeSort(x[nL:]))

当然这么写效率是非常低的,如果像高效还是得用指针,但我都已经用Python了,所以就不去想效率的问题,问题的关键是这种带有返回值的递归程序根本没法画图啊。。。所以还是改成指针的写法

def Merge(X, nL):
    nR = len(X)-nL
    XL,XR = X[:nL]*1,X[nL:]*1
    iterL,iterR = 0,0
    for i in range(nL+nR):
        if(iterL==nL): break
        if(iterR==nR): 
            X[i:] = XL[iterL:]
            return
        if(XL[iterL]<XR[iterR]):
            X[i] = XL[iterL]
            iterL += 1
        else:
            X[i] = XR[iterR]
            iterR += 1

def MergeSort(X):
    if len(X)<2:
        return
    nL = len(X)//2
    MergeSort(X[:nL])
    MergeSort(X[nL:])
    Merge(X,nL)

这个图。。怎么说呢,因为在【Merge】过程中,有很多bar被掩盖掉了,所以可能只有画图的人能看懂吧。。。

在这里插入图片描述

希尔排序

据说是第一个突破 O ( n 2 ) O(n^2) O(n2)的排序算法,又称为缩小增量排序,本质上也是一种分治方案。

在归并排序中,先将长度为n的数组划分为nL和nR两部分,然后继续划分,直到每个数组的长度不大于2,再对每个不大于2的数组进行排序。这样,每个子数组内部有序而整体无序,然后将有序的数组进行回溯重组,直到重新变成长度为n的数组为止。

希尔排序反其道而行之,在将数组划分为nL和nR后,对nL和nR进行按位排序,使得nL和nR内部无序,但整体有序。然后再将数组进行细分,当数组长度变成1的时候,内部也就谈不上无序了,而所有长度为1的数组整体有序,也就是说有这些子数组所组成的数组是有序的。

算法步骤 \textbf{算法步骤} 算法步骤

设数组有 n n n个元素, { a 0 , a 1 , … , a n } \{a_0,a_1,\ldots,a_n\} {a0,a1,,an}

  1. 如果数组元素大于2,则将数组分成左数组和右数组,并对左数组和右数组的元素进行一对一地排序。
  2. 对每一个数组进行细分,然后将每个子数组进行一对一排序。
def ShellSort(arr):
    n = len(arr)
    nSub = n//2
    while nSub>0:
        for i in range(nSub,n):
            temp = arr[i]
            j = i-nSub
            while j>=0 and temp<arr[j]:
                arr[j+nSub] = arr[j]
                j -= nSub
            arr[j+nSub] = temp
        nSub //= 2

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1447982.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

训练深度学习模型的过程

深度学习的训练过程是指通过大量的数据来调整神经网络的参数&#xff0c;以使其能够对输入数据进行准确的预测或分类. 训练神经网络的步骤 损失函数&#xff08;Loss Function&#xff09;是一个性能指标&#xff0c;反映神经网络生成接近期望值的值的程度。 损失函数直观上就…

软件实例分享,洗车店系统管理软件会员卡电子系统教程

软件实例分享&#xff0c;洗车店系统管理软件会员卡电子系统教程 一、前言 以下软件教程以 佳易王洗车店会员管理软件V16.0为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 1、会员卡号可以绑定车牌号或手机号 2、卡号也可以直接使用手机号&a…

cool Node后端 中实现中间件的书写

1.需求 在node后端中&#xff0c;想实现一个专门鉴权的文件配置&#xff0c;可以这样来解释 就是 有些接口需要token调用接口&#xff0c;有些接口不需要使用token 调用 这期来详细说明一下 什么是中间件中间件顾名思义是指在请求和响应中间,进行请求数据的拦截处理&#xf…

vivado 使用块综合策略

使用块综合策略 概述 AMD Vivado™合成具有许多策略和全局设置&#xff0c;您可以使用这些策略和设置自定义设计的合成方式。此图显示了可用的预定义策略在“合成设置”和“表&#xff1a;Vivado预配置策略”中提供了一个并排的战略设置的比较。您可以使用RTL或中的属性或XDC…

Bitcoin Bridge:治愈还是诅咒?

1. 引言 主要参考&#xff1a; Bitcoin Bridges: Cure or Curse? 2. 为何需关注Bitcoin bridge&#xff1f; 当前的Bitcoin bridge&#xff0c;其所谓bridge&#xff0c;实际是deposit&#xff1a; 在其它链上的BTC情况为&#xff1a; 尽管当前约有43.7万枚BTC在其它链上…

Stable Diffusion主流UI详细介绍

Stable Diffusion目前主流的操作界面有WebUI、ComfyUI以及Fooocus 这里webui和fooocus在人机交互上的逻辑是一样的&#xff0c;fooocus界面更加简洁。 comfyui是在人机交互上是采用流程节点的交互逻辑&#xff0c;和上面略有区别。 界面分别如下&#xff1a; WebUI界面如下 we…

P1990 覆盖墙壁题解

题目 有一个长为N宽为2的墙壁&#xff0c;给你两种砖头&#xff1a;一个长2宽1&#xff0c;另一个是L型覆盖3个单元的砖头。如下图&#xff1a; 0 0 0 00砖头可以旋转&#xff0c;两种砖头可以无限制提供。你的任务是计算用这两种来覆盖N2的墙壁的覆盖方法。例如一个23的墙…

HotCoin Global: 澳洲双牌照持有平台,坚守全球合规之路

前言&#xff1a; 加密交易平台的合规性不仅是相关法规遵守的问题&#xff0c;更是市场透明度和用户公平性的关键。为促使加密市场的交易活动有规范、有秩序地进行&#xff0c;确保加密投资者的资产与交易安全&#xff0c;部分国家明确对加密资产的交易和经营活动进行监督及管…

概率在AI中的应用

更多AI技术入门知识与工具使用请看下面链接&#xff1a; https://student-api.iyincaishijiao.com/t/iNSVmUE8/

Solidworks:剖切模型

剖切模型可以看清模型内部。今天设计了一个模型&#xff0c;试验一下如何剖切。 操作很方便&#xff0c;只需要点击一下零件模型上方的剖切按钮&#xff0c;立即就转入剖切视图。剖切后结果如下。 工程图纸中也可以展示剖面视图&#xff0c;操作方法是点击工程图工具页中的“…

计算机组成原理:存储系统【二】

&#x1f308;个人主页&#xff1a;godspeed_lucip &#x1f525; 系列专栏&#xff1a;计算机组成与原理基础 &#x1f6f0;️1 Cache概述&#x1f6e9;️1.1 局部性原理&#x1f6eb;1.1.1 空间局部性&#x1f6eb;1.1.2 时间局部性 &#x1f6e9;️1.2 性能指标&#x1f6eb…

探索IDE的世界:什么是IDE?以及适合新手的IDE推荐

引言 在编程的世界里&#xff0c;集成开发环境&#xff08;IDE&#xff09;是我们日常工作的重要工具。无论是初学者还是经验丰富的开发者&#xff0c;一个好的IDE都能极大地提高我们的编程效率。那么&#xff0c;什么是IDE呢&#xff1f;对于新手来说&#xff0c;又应该选择哪…

【C++】内存五大区详解

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …

MySQL表的基础操作

创建表 create table 表名&#xff08;列名 类型&#xff0c;列名 类型……&#xff09; 注意 1.在进行表操作之前都必须选中数据库 2.表名&#xff0c;列名等一般不可以与关键字相同&#xff0c;如果确定相同&#xff0c;就必须用反引号引住 3.可以使用comment来增加字段说…

多模态论文串讲·下【论文精读·49】最近使用 transformer encoder 和 decoder 的一些方法

大家好&#xff0c;我们今天就接着上次多模态串讲&#xff0c;来说一说最近使用 transformer encoder 和 decoder 的一些方法。 1 BLIP&#xff1a;Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation 我们要过的第一篇论文…

Linux中alarm/setitimer函数(信号函数)

alarm函数 函数原型&#xff1a; unsigned int alarm(unsigned int seconds); 函数描述&#xff1a;设置定时器&#xff08;闹钟&#xff09;。在指定seconds后&#xff0c;内核会给当前进程发送 14&#xff09;SIGALRM信号。进程收到该信号&#xff0c;默认动作终止。每个进程…

Ubuntu下Anaconda+PyCharm搭建PyTorch环境

这里主要介绍在condapytorch都正确安装的前提下&#xff0c;如何通过pycharm建立开发环境&#xff1b; Ubuntu下AnacondaPyCharm搭建PyTorch环境 系统环境&#xff1a;Ubuntu22.04 conda: conda 23.11.0 pycharm:如下 condapytorch的安装教程介绍&#xff0c;请点击这里&…

代码随想录算法训练营29期|day50 任务以及具体任务

第九章 动态规划part07 70. 爬楼梯 &#xff08;进阶&#xff09;import java.util.Scanner; class climbStairs{public static void main(String [] args){Scanner sc new Scanner(System.in);int m, n;while (sc.hasNextInt()) {// 从键盘输入参数&#xff0c;中间用空格隔开…

简单工厂模式-Simple Factory Pattern

原文地址:https://jaune162.blog/design-pattern/simple-factory-pattern/ 简介 简单工厂模式是一种非常常用的设计模式,但是并不属于GoF中的23种设计模式。简单设计模式有很多种实现方式。 本文我们就来讨论简单工厂模式的实现方式,以及如何借助Spring实现一个扩展性很好…

寒假作业-day11

1>编程实现二维数组的杨辉三角 2>编程实现二维数组计算每一行的和以及列和 3>编程实现二维数计算第二大值 代码&#xff1a; #include<stdio.h> #include<stdlib.h> #include<string.h>void yanghui(int n){int arr[n][n];for (int i 0; i <…