C++ :内存管理 newdelete

news2025/1/22 9:05:30

目录

内存区域划分

C++的动态内存的管理方式 

 new

new的基本使用方法 

【注意事项】 

delete 

【注意】

new和delete操作自定义类型 

operator new 和 operator delete 

【关于自定义类型new申请内存】

【原理】 

【调用顺序】 

【连续开辟空间问题】 

malloc/free和new/delete的区别


 内存区域划分

【说明】

  1. 栈又叫堆栈--非静态局部变量/函数参数/返回值等等,栈是向下增长的,栈是一种用于存储局部变量和函数调用信息的内存区域。
  2. 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口 创建共享共享内存,做进程间通信。
  3. 堆用于程序运行时动态内存分配,堆是可以上增长的
  4. 数据段--存储全局数据和静态数据(被静态关键字修饰的变量)。
  5. 代码段--可执行的代码/只读常量。 

C++的动态内存的管理方式 

C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因 此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。 

 new

new 负责在 堆区heap 中找到一个足以满足要求的内存。new还有另外一种变体,被称为 定位new 运算符,能够指定使用具体的内存位置

new的基本使用方法 

int main()
{
   int * p1 = new int;  // 表示在堆上开辟了一个int类型大小的对象空间
  
   int * p2 = new int[10]; // 表示在堆上开辟了十个int类型大小的对象空间

   int * p3 = new int(10); 
 //表示开辟了一个int类型大小的对象空间,并且将这个对象初始化为int类型的10

   int * p4 = new int[10]{1,2,3,4,5};
//表示开辟了十个int类型大小的对象空间,并且给十个空间的前五个对象进行初始化,之后的对象全部初始化为0

}
【注意事项】 

 在初始化之前,new仅仅只是在堆上开辟了空间,并没有进行初始化操作。

delete 

 delete 和free的功能一样,同样都是释放空间,但有与之不同。

int main()
{
   int * p1 = new int;  // 表示在堆上开辟了一个int类型大小的对象空间

   delete p1;
  
   int * p2 = new int[10]; // 表示在堆上开辟了十个int类型大小的对象空间

   delete[] p2;

   int * p3 = new int(10); 
 //表示开辟了一个int类型大小的对象空间,并且将这个对象初始化为int类型的10

  delete p3;


   int * p4 = new int[10]{1,2,3,4,5};
//表示开辟了十个int类型大小的对象空间,并且给十个空间的前五个对象进行初始化,之后的对象全部初始化为0

  
  delete[] p4;
 
  
}

【注意】

申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用 new[]和delete[],需要注意匹配起来使用。 

new和delete操作自定义类型 

在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数,而malloc与 free不会。 

//类A
class A
{
public:

//类A的构造函数的初始化列表
 A(int a = 0)
 : _a(a)
 {
 cout << "A():" << this << endl;
 }

//类A的析构函数
 ~A()
 {
 cout << "~A():" << this << endl;
 }
private:
 int _a;
};


int main()
{

 // new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间还会调用构造函数和析构函数

 A* p1 = (A*)malloc(sizeof(A));//使用了malloc进行空间的开辟,但是没有初始化操作
 A* p2 = new A(1);//调用了A的构造函数并且开辟了空间,进行了初始化操作
 free(p1);
 delete p2;

 // 内置类型是几乎是一样的
 int* p3 = (int*)malloc(sizeof(int)); // malloc函数进行空间的操作
 int* p4 = new int;//new的空间开辟操作
 free(p3); 
 delete p4;
 
 //连续开辟空间的操作
 A* p5 = (A*)malloc(sizeof(A)*10);
 A* p6 = new A[10];
 free(p5);
 delete[] p6;
 

 return 0;

}

operator new 和 operator delete 

new和delete是用户进行动态内存申请和释放的操作符,operator new 和operator delete是 系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过 operator delete全局函数来释放空间。 

 operator new 是对malloc的封装 ,operator delete是对free的封装

int * p1 = (int*)operator new(10*4);
//operator new 的用法而后malloc的用法一样,日常是不会使用的

【关于自定义类型new申请内存】

  1. malloc在调用失败后会返回空,但是C++是一种面向对象的,所以需要进行异常抛出,(malloc失败后是需要我们自己检查,或者我们提前写出一个失败后的检查机制,但是operator new 与new 是对malloc的封装,它封装的内部具有抛异常的函数)
  2. 但是operator new 和 malloc的用法一致,虽然多了一个检查内部异常,但是大部分程序员是不会使用的,程序员使用最多的还是new 和 delete 
  3. 而且,new 的内部其实是 operator new 和调用构造函数 ,而operator new 封装了 malloc 和检查异常功能
  4. new 的本质是一个操作符,它的底层是malloc函数,在编译器碰见new时就会自动转化为对应的代码指令

【原理】 

  • new的原理
  1. 调用operator new函数申请空间
  2. 在申请的空间上执行构造函数,完成对象的构造 
  • delete的原理
  1. 在空间上执行析构函数,完成对象中资源的清理工作
  2. 调用operator delete函数释放对象的空间 
  • new T[N]的原理
  1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对 象空间的申请
  2. 在申请的空间上执行N次构造函数 
  • delete[]的原理
  1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理  
  2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释 放空间 

【调用顺序】 

1.new-> operator new ->malloc ->operator new ->operator new + 构造函数 

2. new[] -> operator new []->operator new  -> malloc ->operator new ->operator new[] ->operator new [] + n次的构造函数

【连续开辟空间问题】 

自定义类型使用new连续开辟空间时, 所产生的字节数会比我们需要开辟的字节数多,这个原因其实是delete的书写格式造成的。

因为delete 释放数组空间的时候,是不会在[]内部加上数字的,所以需要有一个东西让delete知道要释放多少字节,而new []会多次一个字节的空间,这个空间就算存放一个数字,给予delete进行识别要释放多少字节 

 

 当然,多开辟空间的问题只是针对于自定义类型,而内置类型并不需要多开辟空间,但是自定义类型也需要看情况:如果自定义类型没有写析构函数,而是编译器自动生成的析构函数则也不需要多开辟空间

同时,就算有析构函数但按照不匹配的写法,那么释放的位置就会出错,他少释放了最开始访问数字识别的位置 ,简单来说,有析构函数就会多开辟空间,但是不匹配的写法会少释放那个开辟的空间!

malloc/free和new/delete的区别

malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。

不同的地方是: 

1.malloc和free是函数,new和delete是操作符

2. malloc申请的空间不会初始化,new可以初始化

3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可, 如果是多个对象,[]中指定对象个数即可

4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型

5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需 要捕获异常

6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new 在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成 空间中资源的清理


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1446741.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在面试中如何回复擅长vue还是react

当面试官问及这个问题的时候&#xff0c;我们需要思考面试官是否是在乎你是掌握vue还是react吗&#xff1f;&#xff1f;&#xff1f; 在大前端的一个环境下&#xff0c;当前又有AI人工智能的加持辅助&#xff0c;我们是不是要去思考企业在进行前端岗位人员需求的时候&#xf…

哈夫曼树的学习以及实践

哈夫曼树 哈夫曼树的基本了解哈夫曼树的基本概念创建霍夫曼树的思路编码构建的思路代码实现创建HuffmanTree结点初始化HuffmanTree创建霍夫曼树霍夫曼树编码 哈夫曼树的基本了解 给定 n 个 权值 作为 n 个 叶子节点&#xff0c;构造一颗二叉树&#xff0c;若该树的 带权路径长…

Vue源码系列讲解——模板编译篇【二】(模板解析阶段)

目录 1. 整体流程 2. 回到源码 3. 总结 1. 整体流程 上篇文章中我们说了&#xff0c;在模板解析阶段主要做的工作是把用户在<template></template>标签内写的模板使用正则等方式解析成抽象语法树&#xff08;AST&#xff09;。而这一阶段在源码中对应解析器&…

读千脑智能笔记12_阻止人类灭绝

1. 阻止人类灭绝 1.1. 宇宙中唯一知道这些的物体&#xff0c;唯一知道宇宙存在的物体&#xff0c;是我们的大脑 1.2. 如果没有关于某个事物的知识&#xff0c;我们能说这个事物就一定存在吗&#xff1f; 1.2.1. 我们的大脑扮演着这样一个独特的角色&#xff0c;这很令人着迷…

宽带高效非对称连续J/F-1模式Doherty 功率放大器设计(2023.11 MTT)-从理论到ADS版图

宽带高效非对称连续J/F-1模式Doherty 功率放大器设计(2023.11 MTT)-从理论到ADS版图 这个文章实现的效果非常好&#xff0c;非常值得大家去阅读复现&#xff08;见前言介绍&#xff09;&#xff0c;但是我复现出现了一点困难&#xff0c;效果调不到那么好&#xff08;带宽只是…

家政小程序系统源码开发:引领智能生活新篇章

随着科技的飞速发展&#xff0c;小程序作为一种便捷的应用形态&#xff0c;已经深入到我们生活的方方面面。尤其在家庭服务领域&#xff0c;家政小程序的出现为人们带来了前所未有的便利。它不仅简化了家政服务的流程&#xff0c;提升了服务质量&#xff0c;还为家政服务行业注…

Linux--常用命令(详解)

详细目录 一、终端命令格式二、显示文件列表命令-ls2.1作用2.2格式2.3 ls常用选项2.3.1 ls -a2.3.2 ls -l(等价于 ll)2.3.2 ls -h 三、相对路径与绝对路径3.1绝对路径3.2相对路径 四、目录操作命令 -cd4.1作用4.2格式4.3案例4.3.1 cd -&#xff1a; 返回上一次所在目录4.3.2 cd…

Agile Initiative, Epic, and Story/Task

Stories, also called “user stories,” are short requirements or requests written from the perspective of an end user. stories are something the team can commit to finish within a one- or two-week sprint.Epics are large bodies of work that can be broken do…

Linux_进程间通信

管道 System V 共享内存 System V IPC 接口介绍 由于进程地址空间的存在&#xff0c;所以进程间有具有独立性&#xff0c;一个进程看不到另一个进程的数据。那么如果我们想让进程间通信&#xff0c;就必须先让它们先看到同一份资源。常见的进程间通信的方法有管道&#xff0c;…

ChatGpt报错:Your authentication token is no longer valid解决办法

今天打开ChatGpt突然提示Oops&#xff01;,Your authentication token is no longer valid.&#xff0c;之前还好好的&#xff0c;环境也没变啊&#xff0c;结果弄了好久终于解决&#xff0c;于是记录一下解决过程&#xff0c;顺便总结一下关于OpenAI各种报错的解决办法。 完整…

比较6*6范围内8个点425个结构的顺序

( A, B )---6*30*2---( 1, 0 )( 0, 1 ) 让网络的输入有6个节点&#xff0c;训练集AB各由6张二值化的图片组成&#xff0c;让A中有8个点&#xff0c;让B全是0&#xff0c;收敛误差7e-4&#xff0c;收敛199次&#xff0c;统计迭代次数平均值并排序。 假设这个6*6的结构的行和列都…

JavaWeb:SpingBoot原理 --黑马笔记

1. 配置优先级 在我们前面的课程当中&#xff0c;我们已经讲解了SpringBoot项目当中支持的三类配置文件&#xff1a; application.properties application.yml application.yaml 在SpringBoot项目当中&#xff0c;我们要想配置一个属性&#xff0c;可以通过这三种方式当中…

每日一练:LeeCode-617、合并二叉树【二叉树+DFS】

本文是力扣LeeCode-617、合并二叉树【二叉树DFS】 学习与理解过程&#xff0c;本文仅做学习之用&#xff0c;对本题感兴趣的小伙伴可以出门左拐LeeCode。 给你两棵二叉树&#xff1a; root1 和 root2 。 想象一下&#xff0c;当你将其中一棵覆盖到另一棵之上时&#xff0c;两…

力扣面试题 16.21. 交换和(哈希表)

Problem: 面试题 16.21. 交换和 文章目录 题目描述思路及解法复杂度Code 题目描述 思路及解法 1.分别求取array1与array2数组每一个元素的和&#xff08;sum1与sum2&#xff09;并同时将array2的元素存入一个set集合中&#xff1b; 2.如果sum1和sum2的和为奇数&#xff0c;则不…

深度学习基础之《深度学习介绍》

一、深度学习与机器学习的区别 1、特征提取方面 机器学习&#xff1a;人工特征提取 分类算法 深度学习&#xff1a;没有人工特征提取&#xff0c;直接将特征值传进去 &#xff08;1&#xff09;机器学习的特征工程步骤是要靠手工完成的&#xff0c;而且需要大量领域专业知识…

浅谈进制的转换

本文创作灵感来自CSDN咸鱼WCY 的 咸鱼小白学嵌入式之C语言&#xff08;2.进制&#xff09; 博主更完就没更了&#xff0c;决定书接上回&#xff08;喜 进制是个啥 要理解进制&#xff0c;首先哈&#xff0c;咱得知道不同进制的含义 说到底&#xff0c;各个进制其实有点像在…

Hive SQL编译成MapReduce任务的过程

一、 Hive 底层执行架构 1&#xff09; Hive简介 Hive是Facebook实现的一个开源的数据仓库工具。将结构化的数据文件映射为数据库表&#xff0c;并提供HQL查询功能&#xff0c;将HQL语句转化为MapReduce任务运行 2&#xff09; Hive本质&#xff1a;将 HQL 转化成 MapReduce 程…

Java 基于 SpringBoot+Vue 的社区医院系统

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

26. 可变参数和Collection集合工具类

可变参数与Collections 1. 可变参数1. 概述2. 格式3. 代码示例4. 注意事项 2. Collections集合工具类2.1 概述2.2 方法2.3 代码示例2.4 注意事项 1. 可变参数 1. 概述 可变参数&#xff08;Variable Arguments&#xff09;是指在参数列表中允许传入不定个数的参数。在许多编程…

多模态论文串讲·上【论文精读·46】只用 Transformer encoder 的一些方法viLT、clip、ALBEF、VLMO

目录 简单回顾一下 viLT 简单回顾CLIP 总结后提出改进 1 ALBEF 1.1 主体方法 1.1.1 模型结构 1.1.2 目标函数 1 ITCloss&#xff1a;align before fuse的align 2 ITM loss 3 MLM loss 1.1.3 动量蒸馏 1.2 预训练数据集 1.3 下游任务描述 1.4 实验结果 1 消融实验…