互联网加竞赛 基于深度学习的行人重识别(person reid)

news2025/3/1 1:16:01

文章目录

  • 0 前言
  • 1 技术背景
  • 2 技术介绍
  • 3 重识别技术实现
    • 3.1 数据集
    • 3.2 Person REID
      • 3.2.1 算法原理
      • 3.2.2 算法流程图
  • 4 实现效果
  • 5 部分代码
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的行人重识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 技术背景

行人重识别技术,是智能视频监控系统的关键技术之一,其研宄是针对特定目标行人的视频检索识别问题。行人再识别是一种自动的目标判定识别技术,它综合地运用了计算机视觉技术、机器学习、视频处理、图像分析、模式识别等多种相关技术于监控系统中,其主要描述的是在多个无重叠视域的摄像头监控环境之下,通过相关算法判断在某个镜头下出现过的感兴趣的目标人物是否在其他摄像头下再次出现。

2 技术介绍

在视频监控系统中,行人再识别任务的整体框架如下图所示:
—个监控系统由多个视域不相交的监控摄像头组成,摄像机的位置可以随时更改,同时也可以随时增加或减少摄像机。不两监控摄像头所摄取的画面、视角等各不相同。在这样的监控系统中,对行人的动向监测是,至关重要的。

对行人的监控主要基于以下三个基本的模块:

在这里插入图片描述

  • 行人检测:
    行人检测的目标是在图片中定位到行人的具体位置。这一步骤仅涉及到对于静止的单张图片的处理,而没有动态的处理,没有时间序列上的相关分析。

  • 行人轨迹跟踪:
    行人轨迹跟踪的主要任务是在一段时间内提供目标任务的位置移动信息。与行人检测不同,轨迹跟踪与时间序列紧密相关。行人轨迹跟踪是在行人检测的基础上进行的。

  • 行人再识别:
    行人再识别任务的目标是在没有相重合视域的摄像头或摄像机网络内的不同背景下的许多行人中中识别某个特定行人。行人再识别的分析基于行人检测和轨迹跟踪的结果。其主要步骤首先是检测和跟踪视频序列中的行人,从而提取行人的特征,建立构建模型所需的行人特征集数据库。


在此基础上,用训练出的模型进行学习从而判断得出某个摄像头下的行人与另一摄像头下的目标人物为同一个人。在智能视频监控系统中的行人再识别任务具有非常广阔的应用前景。行人再识别的应用与行人检测、目标跟踪、行人行为分析、敏感事件检测等等都有着紧密的联系,这些分析处理技术对于公安部门的刑侦工作和城市安防建设工作有着重要的意义。

3 重识别技术实现

3.1 数据集

目前行人再识别的研究需要大量的行人数据集。行人再识别的数据集主要是通过在不同区域假设无重叠视域的多个摄像头来采集拍摄有行人图像的视频,然后对视频提取帧,对于视频帧图像采用人工标注或算法识别的方式进行人体检测及标注来完成的。行人再识别数据集中包含了跨背景、跨时间、不同拍摄角度下、各种不同姿势的行人图片,如下图所示。

在这里插入图片描述

3.2 Person REID

3.2.1 算法原理

给定N个不同的行人从不同的拍摄视角的无重叠视域摄像机捕获的图像集合,行人再识别的任务是学习一个模型,该模型可以尽可能减小行人姿势和背景、光照等因素带来的影响,从而更好地对行人进行整体上的描述,更准确地对不同行人图像之间的相似度进行衡量。

我这里使用注意力相关的特征的卷积神经网络。该基础卷积神经网络架构可以由任何卷积神经网络模型代替,例如,VGG-19,ResNet-101。

该算法的核心模块在于注意力学习模型。

3.2.2 算法流程图

在这里插入图片描述

4 实现效果

在多行人场景下,对特定行人进行寻找
在这里插入图片描述

5 部分代码



    import argparse
    import time
    from sys import platform
    
    from models import *
    from utils.datasets import *
    from utils.utils import *
    
    from reid.data import make_data_loader
    from reid.data.transforms import build_transforms
    from reid.modeling import build_model
    from reid.config import cfg as reidCfg


    def detect(cfg,
               data,
               weights,
               images='data/samples',  # input folder
               output='output',  # output folder
               fourcc='mp4v',  # video codec
               img_size=416,
               conf_thres=0.5,
               nms_thres=0.5,
               dist_thres=1.0,
               save_txt=False,
               save_images=True):
    
        # Initialize
        device = torch_utils.select_device(force_cpu=False)
        torch.backends.cudnn.benchmark = False  # set False for reproducible results
        if os.path.exists(output):
            shutil.rmtree(output)  # delete output folder
        os.makedirs(output)  # make new output folder
    
        ############# 行人重识别模型初始化 #############
        query_loader, num_query = make_data_loader(reidCfg)
        reidModel = build_model(reidCfg, num_classes=10126)
        reidModel.load_param(reidCfg.TEST.WEIGHT)
        reidModel.to(device).eval()
    
        query_feats = []
        query_pids  = []
    
        for i, batch in enumerate(query_loader):
            with torch.no_grad():
                img, pid, camid = batch
                img = img.to(device)
                feat = reidModel(img)         # 一共2张待查询图片,每张图片特征向量2048 torch.Size([2, 2048])
                query_feats.append(feat)
                query_pids.extend(np.asarray(pid))  # extend() 函数用于在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)。
    
        query_feats = torch.cat(query_feats, dim=0)  # torch.Size([2, 2048])
        print("The query feature is normalized")
        query_feats = torch.nn.functional.normalize(query_feats, dim=1, p=2) # 计算出查询图片的特征向量
    
        ############# 行人检测模型初始化 #############
        model = Darknet(cfg, img_size)
    
        # Load weights
        if weights.endswith('.pt'):  # pytorch format
            model.load_state_dict(torch.load(weights, map_location=device)['model'])
        else:  # darknet format
            _ = load_darknet_weights(model, weights)
    
        # Eval mode
        model.to(device).eval()
        # Half precision
        opt.half = opt.half and device.type != 'cpu'  # half precision only supported on CUDA
        if opt.half:
            model.half()
    
        # Set Dataloader
        vid_path, vid_writer = None, None
        if opt.webcam:
            save_images = False
            dataloader = LoadWebcam(img_size=img_size, half=opt.half)
        else:
            dataloader = LoadImages(images, img_size=img_size, half=opt.half)
    
        # Get classes and colors
        # parse_data_cfg(data)['names']:得到类别名称文件路径 names=data/coco.names
        classes = load_classes(parse_data_cfg(data)['names']) # 得到类别名列表: ['person', 'bicycle'...]
        colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))] # 对于每种类别随机使用一种颜色画框
    
        # Run inference
        t0 = time.time()
        for i, (path, img, im0, vid_cap) in enumerate(dataloader):
            t = time.time()
            # if i < 500 or i % 5 == 0:
            #     continue
            save_path = str(Path(output) / Path(path).name) # 保存的路径
    
            # Get detections shape: (3, 416, 320)
            img = torch.from_numpy(img).unsqueeze(0).to(device) # torch.Size([1, 3, 416, 320])
            pred, _ = model(img) # 经过处理的网络预测,和原始的
            det = non_max_suppression(pred.float(), conf_thres, nms_thres)[0] # torch.Size([5, 7])
    
            if det is not None and len(det) > 0:
                # Rescale boxes from 416 to true image size 映射到原图
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
    
                # Print results to screen image 1/3 data\samples\000493.jpg: 288x416 5 persons, Done. (0.869s)
                print('%gx%g ' % img.shape[2:], end='')  # print image size '288x416'
                for c in det[:, -1].unique():   # 对图片的所有类进行遍历循环
                    n = (det[:, -1] == c).sum() # 得到了当前类别的个数,也可以用来统计数目
                    if classes[int(c)] == 'person':
                        print('%g %ss' % (n, classes[int(c)]), end=', ') # 打印个数和类别'5 persons'
    
                # Draw bounding boxes and labels of detections
                # (x1y1x2y2, obj_conf, class_conf, class_pred)
                count = 0
                gallery_img = []
                gallery_loc = []
                for *xyxy, conf, cls_conf, cls in det: # 对于最后的预测框进行遍历
                    # *xyxy: 对于原图来说的左上角右下角坐标: [tensor(349.), tensor(26.), tensor(468.), tensor(341.)]
                    if save_txt:  # Write to file
                        with open(save_path + '.txt', 'a') as file:
                            file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))
    
                    # Add bbox to the image
                    label = '%s %.2f' % (classes[int(cls)], conf) # 'person 1.00'
                    if classes[int(cls)] == 'person':
                        #plot_one_bo x(xyxy, im0, label=label, color=colors[int(cls)])
                        xmin = int(xyxy[0])
                        ymin = int(xyxy[1])
                        xmax = int(xyxy[2])
                        ymax = int(xyxy[3])
                        w = xmax - xmin # 233
                        h = ymax - ymin # 602
                        # 如果检测到的行人太小了,感觉意义也不大
                        # 这里需要根据实际情况稍微设置下
                        if w*h > 500:
                            gallery_loc.append((xmin, ymin, xmax, ymax))
                            crop_img = im0[ymin:ymax, xmin:xmax] # HWC (602, 233, 3)
                            crop_img = Image.fromarray(cv2.cvtColor(crop_img, cv2.COLOR_BGR2RGB))  # PIL: (233, 602)
                            crop_img = build_transforms(reidCfg)(crop_img).unsqueeze(0)  # torch.Size([1, 3, 256, 128])
                            gallery_img.append(crop_img)
    
                if gallery_img:
                    gallery_img = torch.cat(gallery_img, dim=0)  # torch.Size([7, 3, 256, 128])
                    gallery_img = gallery_img.to(device)
                    gallery_feats = reidModel(gallery_img) # torch.Size([7, 2048])
                    print("The gallery feature is normalized")
                    gallery_feats = torch.nn.functional.normalize(gallery_feats, dim=1, p=2)  # 计算出查询图片的特征向量
    
                    # m: 2
                    # n: 7
                    m, n = query_feats.shape[0], gallery_feats.shape[0]
                    distmat = torch.pow(query_feats, 2).sum(dim=1, keepdim=True).expand(m, n) + \
                              torch.pow(gallery_feats, 2).sum(dim=1, keepdim=True).expand(n, m).t()
                    # out=(beta∗M)+(alpha∗mat1@mat2)
                    # qf^2 + gf^2 - 2 * qf@gf.t()
                    # distmat - 2 * qf@gf.t()
                    # distmat: qf^2 + gf^2
                    # qf: torch.Size([2, 2048])
                    # gf: torch.Size([7, 2048])
                    distmat.addmm_(1, -2, query_feats, gallery_feats.t())
                    # distmat = (qf - gf)^2
                    # distmat = np.array([[1.79536, 2.00926, 0.52790, 1.98851, 2.15138, 1.75929, 1.99410],
                    #                     [1.78843, 1.96036, 0.53674, 1.98929, 1.99490, 1.84878, 1.98575]])
                    distmat = distmat.cpu().numpy()  # : (3, 12)
                    distmat = distmat.sum(axis=0) / len(query_feats) # 平均一下query中同一行人的多个结果
                    index = distmat.argmin()
                    if distmat[index] < dist_thres:
                        print('距离:%s'%distmat[index])
                        plot_one_box(gallery_loc[index], im0, label='find!', color=colors[int(cls)])
                        # cv2.imshow('person search', im0)
                        # cv2.waitKey()
    
            print('Done. (%.3fs)' % (time.time() - t))
    
            if opt.webcam:  # Show live webcam
                cv2.imshow(weights, im0)
    
            if save_images:  # Save image with detections
                if dataloader.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
    
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        width = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        height = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (width, height))
                    vid_writer.write(im0)
    
        if save_images:
            print('Results saved to %s' % os.getcwd() + os.sep + output)
            if platform == 'darwin':  # macos
                os.system('open ' + output + ' ' + save_path)
    
        print('Done. (%.3fs)' % (time.time() - t0))


    if __name__ == '__main__':
        parser = argparse.ArgumentParser()
        parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help="模型配置文件路径")
        parser.add_argument('--data', type=str, default='data/coco.data', help="数据集配置文件所在路径")
        parser.add_argument('--weights', type=str, default='weights/yolov3.weights', help='模型权重文件路径')
        parser.add_argument('--images', type=str, default='data/samples', help='需要进行检测的图片文件夹')
        parser.add_argument('-q', '--query', default=r'query', help='查询图片的读取路径.')
        parser.add_argument('--img-size', type=int, default=416, help='输入分辨率大小')
        parser.add_argument('--conf-thres', type=float, default=0.1, help='物体置信度阈值')
        parser.add_argument('--nms-thres', type=float, default=0.4, help='NMS阈值')
        parser.add_argument('--dist_thres', type=float, default=1.0, help='行人图片距离阈值,小于这个距离,就认为是该行人')
        parser.add_argument('--fourcc', type=str, default='mp4v', help='fourcc output video codec (verify ffmpeg support)')
        parser.add_argument('--output', type=str, default='output', help='检测后的图片或视频保存的路径')
        parser.add_argument('--half', default=False, help='是否采用半精度FP16进行推理')
        parser.add_argument('--webcam', default=False, help='是否使用摄像头进行检测')
        opt = parser.parse_args()
        print(opt)
    
        with torch.no_grad():
            detect(opt.cfg,
                   opt.data,
                   opt.weights,
                   images=opt.images,
                   img_size=opt.img_size,
                   conf_thres=opt.conf_thres,
                   nms_thres=opt.nms_thres,
                   dist_thres=opt.dist_thres,
                   fourcc=opt.fourcc,
                   output=opt.output)


6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1445323.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

政安晨:在Jupyter中【示例演绎】Matplotlib的官方指南(二){Image tutorial}·{Python语言}

咱们接着上一篇&#xff0c;这次咱们讲使用Matplotlib绘制图像的简短尝试。 我的这个系列的上一篇文章在这里&#xff1a; 政安晨&#xff1a;在Jupyter中【示例演绎】Matplotlib的官方指南&#xff08;一&#xff09;{Pyplot tutorial}https://blog.csdn.net/snowdenkeke/ar…

创建菜单与游戏页面

bootstrap地址 Bootstrap v5 中文文档 Bootstrap 是全球最受欢迎的 HTML、CSS 和 JS 前端工具库。 | Bootstrap 中文网 (bootcss.com) 创建导航栏组件 web--src--components--NavBar.vue <!-- html --> <template><nav class"navbar navbar-expand-lg n…

Linux ipvlan详解(l2、l3、l3s和bridge、private和vepa模式)

Linux ipvlan详解&#xff0c;测试l2、l3、l3s和bridge、private和vepa模式。 最近在看Docker的网络&#xff0c;看到关于ipvlan网络的介绍。查阅了相关资料&#xff0c;记录如下。 参考 1.图解几个与Linux网络虚拟化相关的虚拟网卡-VETH/MACVLAN/MACVTAP/IPVLAN 2.IPVlan 详…

假如程序员也分等级……

本次考试有10道题&#xff0c;一题10分&#xff0c;做完后可查看段位等级。 1.请问复制粘贴用什么快捷键&#xff1f; A.CtrlV,CtrlC B.CtrlC,CtrlV 2.计算机里用的是&#xff08; &#xff09;进制&#xff1f; A.二 B.十 3.对于输出“Hello world”正确的一项是&#…

Oracle 几种行转列的方式 sum+decode sum+case when pivot

目录 原始数据&#xff1a; 方式一&#xff1a; 方式二&#xff1a; 方式三&#xff1a; unpivot的使用&#xff1a; 原始数据&#xff1a; 方式一&#xff1a; select t_name,sum(decode(t_item, item1, t_num, 0)) item1,sum(decode(t_item, item2, t_num, 0)) item2,s…

洗地机买什么品牌好?最好的洗地机品牌

对于双职工家庭来说&#xff0c;日常家务活是一个很大的难题。所以就要借助洗地机来提升生活质量&#xff0c;确实智能家电能够帮助日常家务减负。市面上的洗地机的品牌是真的很多&#xff0c;笔者今天带大家一起来看看什么洗地机品牌好用。 该如何挑选适合自己的家用洗地机 …

nginx2

mkdir /usr/local/develop cd /usr/local/develop 下载 wget http://nginx.org/download/nginx-1.17.4.tar.gz 解压文件 tar zxmf nginx-1.17.4.tar.gz 进入解压目录 cd nginx-1.17.4/ 安装编译工具及依赖库 都安装成功后再次执行会有下面提示 yum -y install gcc pcre-de…

C++入门学习(二十七)跳转语句—continue语句

当在循环中遇到continue语句时&#xff0c;它会跳过当前迭代剩余的代码块&#xff0c;并立即开始下一次迭代。这意味着continue语句用于跳过循环中特定的执行步骤&#xff0c;而不是完全终止循环。 直接看一下下面的代码更清晰&#xff1a; 与上一节的break语句可以做一下对比…

编译OpenSSL时报错,Can‘t locate IPC/Cmd.pm in @INC

编译OpenSSL 3.0.1时报错&#xff0c;错误信息如下 解决方法&#xff1a; 安装perl-CPAN yum install -y perl-CPAN进入CPAN的shell模式&#xff0c;首次进入需要配置shell&#xff0c;按照提示操作即可&#xff08;本人perl小白&#xff0c;全部选择默认配置&#xff0c;高…

WSL下如何使用Ubuntu本地部署Vits2.3-Extra-v2:中文特化修复版(新手从0开始部署教程)

环境&#xff1a; 硬&#xff1a; 台式电脑 1.cpu:I5 11代以上 2.内存16G以上 3.硬盘固态500G以上 4.显卡N卡8G显存以上 20系2070以上 本案例英伟达4070 12G 5.网络可连github 软&#xff1a; Win10 专业版 19045以上 WSL2 -Ubuntu22.04 1.bert-Vits2.3 Extra-v2:…

Packet Tracer - Configure IOS Intrusion Prevention System (IPS) Using the CLI

Packet Tracer - 使用CLI配置IOS入侵防御系统&#xff08;IPS&#xff09; 地址表 目标 启用IOS入侵防御系统&#xff08;IPS&#xff09;。 配置日志记录功能。 修改IPS签名规则。 验证IPS配置。 背景/场景 您的任务是在R1上启用IPS&#xff0c;扫描进入192.168.1.0网络…

django报错:Cannot use ImageField because Pillow is not installed

1、问题概述 ERRORS: accounts.User.avatar: (fields.E210) Cannot use ImageField because Pillow is not installed. HINT: Get Pillow at https://pypi.org/project/Pillow/ or run command "python -m pip install Pillow". System check identified 1 …

98.网游逆向分析与插件开发-网络通信封包解析-定位明文发送数据的关键函数

内容参考于&#xff1a;易道云信息技术研究院VIP课 上一个内容&#xff1a;项目需求与需求拆解 通过上一个内容有了对网络通信架构有一个简单认识了解&#xff0c;对于我们重要的点是 组织数据 到 加密数据之间的过程&#xff0c;这个过程的数据我们是可以看懂的&#xff0c;…

Duilib List 控件学习

这是自带的一个示例; 一开始运行的时候List中是空的,点击Search按钮以后就填充列表框; 先看一下列表框列头是在xml文件中形成的; <List name="domainlist" bkcolor="#FFFFFFFF" ... menu="true"> <ListHeader height="24…

【MySQL进阶之路】好友推荐系统索引设计实战

欢迎关注公众号&#xff08;通过文章导读关注&#xff1a;【11来了】&#xff09;&#xff0c;及时收到 AI 前沿项目工具及新技术的推送&#xff01; 在我后台回复 「资料」 可领取编程高频电子书&#xff01; 在我后台回复「面试」可领取硬核面试笔记&#xff01; 文章导读地址…

ADSelfService Plus发布离线MFA功能,强化远程工作安全性

ManageEngine ADSelfService Plus推出离线多因素身份验证&#xff0c;提升远程工作安全性确保通过先进的验证方法对企业数据进行授权访问&#xff0c;无论时间、地点或连接问题如何允许远程用户安全进行身份验证&#xff0c;即使未连接到认证服务器或互联网使用高度安全的基于T…

###C语言程序设计-----C语言学习(12)#进制间转换,十进制,二进制,八进制,十六进制

前言&#xff1a;感谢您的关注哦&#xff0c;我会持续更新编程相关知识&#xff0c;愿您在这里有所收获。如果有任何问题&#xff0c;欢迎沟通交流&#xff01;期待与您在学习编程的道路上共同进步。 计算机处理的所有信息都以二进制形式表示&#xff0c;即数据的存储和计算都采…

协议-TCP协议-基础概念04-可能发生丢包的位置-linux配置项梳理(TCP连接的建立和断开、收发包过程)

可能发生丢包的位置-linux配置项梳理&#xff08;TCP连接的建立和断开、收发包过程&#xff09;-SYN Flood攻击和防御原理 参考来源&#xff1a; 极客时间-Linux性能优化实战 极客时间-Linux内核技术实战课 到底是哪里发生了丢包呢&#xff1f; Linux 的网络收发流程 从图中…

【java】12:封装

面向对象编程三大特征 1.基本介绍 面向对象编程有三大特征&#xff1a;封装、继承和多态。 2.封装介绍 封装(encapsulation)就是把抽象出的数据[属性]和对数据的操作[方法]封装在一起&#xff0c;数据被保护在内部&#xff0c;程序的其它部分只有通过被授权的操作[方法]&am…

3秒实现无痛基于Stable Diffusion WebUI安装ComfyUI!无需重复安装环境!无需重复下载模型!安装教程

标题略有夸张的表达了接下来这一套确实很简单&#xff0c;相较于直接下载或者通过秋叶包更新而言。大大节省磁盘空间&#xff0c;和下载时间。 这篇教程不需要你有&#xff1a; 代码基础。都是复制粘贴就完事。魔法。 这篇教程默认你已经有&#xff1a; 1. 本地能够正常使用…