[论文精读]Community-Aware Transformer for Autism Prediction in fMRI Connectome

news2024/11/19 6:33:13

论文网址:[2307.10181] Community-Aware Transformer for Autism Prediction in fMRI Connectome (arxiv.org)

论文代码:GitHub - ubc-tea/Com-BrainTF: The official Pytorch implementation of paper "Community-Aware Transformer for Autism Prediction in fMRI Connectome" accepted by MICCAI 2023

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!

1. 省流版

1.1. 心得

(1)我超,开篇自闭症是lifelong疾病。搜了搜是真的啊,玉玉可以治愈但是自闭症不太行,为啥,太神奇了。我还没有见过自闭症的

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

        ①Treating each ROI equally will overlook the social relationships between them. Thus, the authors put forward Com-BrainTF model to learn local and global presentations

        ②They share the parameters between different communities but provide specific token for each community

2.2. Introduction

        ①ASD patients perform abnormal in default mode network (DMN) and are influenced by the significant change of dorsal attention network (DAN) and DMN

        ②Com-BrainTF contains a hierarchical transformer to learn community embedding and a local transformer to aggregate the whole information of brain

        ③Sharing the local transformer parameters can avoid over-parameterization

2.3. Method

2.3.1. Overview

(1)Problem Definition

        ①They adopt Pearson correlation coefficients methods to obrain functional connectivity matrices

        ②Then divide N ROIs to K communities \{X_{1},X_{2},\ldots,X_{K}\},X_k\in\mathbb{R}^{N_k\times N}

        ③The learned embedding H=[H_{1},\ldots,H_{k}],H_k\in\mathbb{R}^{N_k\times N}\mapsto Z_{L}\in\mathbb{R}^{N\times N}

        ④Next, the following pooling layer and MPLs predict the labels

(2)Overview of our Pipeline

        ①They provide a local transformer, a global transformer and a pooling layer in their local-global transformer architecture

        ②The overall framework

2.3.2. Local-global transformer encoder

        ①With the input FC, the learned node feature matrix H_i can be calculated by H_i=(\|_{m=1}^Mh^m)W_O

        ②In transformer encoder module,

h^m=\text{softmax}\bigg(\frac{Q^m(K^m)^T}{\sqrt{d_k^m}}\bigg)V^m

where Q^{m}=W_{Q}X_{i}^{\prime},K^{m}=W_{K}X_{i}^{\prime},V^{m}=W_{V}X_{i}^{\prime},X_{i}^{\prime}=[p_{i},X_{i}],

M is the number of heads

(1)Local Transformer

        ①They apply same local transformer for all the input, but use unique learnable tokens \{p_1,p_2,...,p_k\},p_i\in\mathbb{R}^{1\times N}:

p_i',H_i=\text{LocalTransformer}([p_i,X_i])\text{where},i\in[1,2...K]

(2)Global Transformer

        ①The global operation is:

p_{global}=\text{MLP (Concat }(p_1^{'},p_2^{'}\ldots p_K^{'}))

H_{global}=\text{Concat}(H_1,H_2,\ldots,H_K)

p^{'},Z_L=\text{GlobalTransformer}([p_{global},H_{global}])

2.3.3. Graph Readout Layer

        ①They aggregate node embedding by OCRead.

        ②The graph level embedding Z_G is calculated by Z_{G}=A^{\top}Z^{L}, where A\in\mathbb{R}^{K\times N} is a learnable assignment matrix computed by OCRead layer

        ③Afterwards, flattening Z_G and put it in MLP for final prediction

        ④Loss: CrossEntropy (CE) loss

2.4. Experiments

2.4.1. Datasets and Experimental Settings

(1)ABIDE

(2)Experimental Settings

2.4.2. Quantitative and Qualitative Results

2.4.3. Ablation studies

(1)Input: node features vs. class tokens of local transformers

(2)Output: Cross Entropy loss on the learned node features vs. prompt token

2.5. Conclusion

2.6. Supplementary Materials

2.6.1. Variations on the Number of Prompts

2.6.2. Attention Scores of ASD vs. HC in Comparison between Com-BrainTF (ours) and BNT (baseline)

2.6.3. Decoded Functional Group Differences of ASD vs. HC

3. 知识补充

4. Reference List

Bannadabhavi A. et al. (2023) 'Community-Aware Transformer for Autism Prediction in fMRI Connectome', 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023), doi: https://doi.org/10.48550/arXiv.2307.10181

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1442953.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python解决SSL不可用问题

参考:https://blog.csdn.net/weixin_44894162/article/details/126342591 一、问题描述: 报错概述: WARNING: pip is configured with locations that require TLS/SSL, however the ssl module in Python is not available. ## 警告:pip配…

空气质量预测 | Matlab实现基于BP神经网络回归的空气质量预测模型

文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 政府机构使用空气质量指数 (AQI) 向公众传达当前空气污染程度或预测空气污染程度。 随着 AQI 的上升,公共卫生风险也会增加。 不同国家有自己的空气质量指数,对应不同国家的空气质量标准。 基于BP(Backpropag…

微服务学习 | Spring Cloud 中使用 Sentinel 实现服务限流

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站https://www.captainbed.cn/kitie。 目录 前言 通过代码实现限流 定义资源 通过代码定义资源 通过注解方式定义资源 定义限流规则 通过…

反序列化漏洞——PHP原生类

Error类 PHP>7.0,因为存在__toString,可以进行XSS Exception类 因为存在__toString,可以进行XSS DirectoryIterator类 因为存在__toString,可以获取符合要求的第一个文件名 SplFileObject类 因为存在__toString&#xff0c…

深入浅出:Golang的Crypto/SHA256库实战指南

深入浅出:Golang的Crypto/SHA256库实战指南 介绍crypto/sha256库概览主要功能应用场景库结构和接口实例 基础使用教程字符串哈希化文件哈希化处理大型数据 进阶使用方法增量哈希计算使用Salt增强安全性多线程哈希计算 实际案例分析案例一:安全用户认证系…

缺省参数(c++)

void fun(int a0) { cout<<a<<endl; } 当我们调用函数时: fun(10) 输出10; fun&#xff08;&#xff09; 未传参时&#xff1a; 输出0; 未传参时a就会接受0&#xff0c;相当于这个0就是“备胎” 传参了0就没有用 全缺省 void fun2(int a10,int b3,int…

力扣刷题之旅:进阶篇(六)—— 图论与最短路径问题

力扣&#xff08;LeetCode&#xff09;是一个在线编程平台&#xff0c;主要用于帮助程序员提升算法和数据结构方面的能力。以下是一些力扣上的入门题目&#xff0c;以及它们的解题代码。 --点击进入刷题地址 引言 在算法的广阔天地中&#xff0c;图论是一个非常重要的领域。…

【开源】JAVA+Vue+SpringBoot实现实验室耗材管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 耗材档案模块2.2 耗材入库模块2.3 耗材出库模块2.4 耗材申请模块2.5 耗材审核模块 三、系统展示四、核心代码4.1 查询耗材品类4.2 查询资产出库清单4.3 资产出库4.4 查询入库单4.5 资产入库 五、免责说明 一、摘要 1.1…

《软件方法》强化自测题-总纲(8)

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 按照业务建模、需求、分析、设计工作流考察&#xff0c;答案不直接给出&#xff0c;可访问自测链接或扫二维码自测&#xff0c;做到全对才能知道答案。 知识点见《软件方法》、“软件…

低代码市场的未来展望:趋势、机遇与挑战

根据 Zoho 的一项新研究&#xff0c;低代码市场正处于成为主流的风口浪尖。该报告对全球 800 多名 IT 和业务领导者进行了调查&#xff0c;确定了推动其采用的几个因素。其中最重要的是提高应用程序的开发速度。 这一发现对企业领导者来说应该不足为奇。 客户、合作伙伴和员工…

[职场] 如何通过运营面试_1 #笔记#媒体#经验分享

如何通过运营面试 盈利是公司的事情&#xff0c;而用户就是你运营的事情。你需要彻底建立一个庞大而有效的用户群&#xff0c;这样才能让你们的公司想盈利就盈利&#xff0c;想战略就战略&#xff0c;想融资就融资。 一般从事运营的人有着强大的自信心&#xff0c;后台数据分析…

STM32的ADC电压采集

时间记录&#xff1a;2024/2/9 一、ADC相关知识点 &#xff08;1&#xff09;STM32的ADC时钟不要超过14MHz&#xff0c;不然结果的准确率将下降 &#xff08;2&#xff09;ADC分为规则组和注入组&#xff0c;规则组相当于正常运行的程序&#xff0c;注入组相当于中断可以打断…

刘谦春晚纸牌魔术背后的数学—海明码原理简介

在昨天2024年的春晚舞台上&#xff0c;魔术大师刘谦以一场令人拍案叫绝的纸牌魔术再度震撼全场。他巧妙地利用了数学原理&#xff0c;精准无误地让观众“随机”选择的纸牌完成了配对&#xff0c;尤其是令人忍俊不禁的是主持人尼格买提的纸牌却没有如愿配对&#xff0c;小尼碎了…

Java实现快乐贩卖馆管理系统 JAVA+Vue+SpringBoot+MySQL

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 搞笑视频模块2.3 视频收藏模块2.4 视频评分模块2.5 视频交易模块2.6 视频好友模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 搞笑视频表3.2.2 视频收藏表3.2.3 视频评分表3.2.4 视频交易表 四、系…

python从入门到精通(十):python爬虫的BeautifulSoup4

python爬虫的BeautifulSoup4 BeautifulSoup4导入模块解析文件创建对象python解析器beautifulsoup对象的种类Tag获取整个标签获取标签里的属性和属性值Navigablestring 获取标签里的内容BeautifulSoup获取整个文档Comment输出的内容不包含注释符号BeautifulSoup文档遍历Beautifu…

多线程JUC:等待唤醒机制(生产者消费者模式)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位大四、研0学生&#xff0c;正在努力准备大四暑假的实习 &#x1f30c;上期文章&#xff1a;多线程&JUC&#xff1a;解决线程安全问题——synchronized同步代码块、Lock锁 &#x1f4da;订阅专栏&#xff1a;多线程&am…

卫星通讯领域FPGA关注技术:算法和图像方面(2)

最近关注的公众号提到了从事移动通信、卫星通讯等领域的FPGA、ASIC、信号处理算法等工程师可能需要关注的技术&#xff0c;有MVDR算法、高速基带芯片、RF芯片、毫米波有源相控阵天线、无线AI&#xff0c;以下做了一些基础的调研&#xff1a; 1 MVDR算法 声源定位是一个阵列信…

【数据结构与算法】【约瑟夫问题】还在用递归?教你用链表秒杀约瑟夫

&#x1f389;&#x1f389;欢迎光临&#x1f389;&#x1f389; &#x1f3c5;我是苏泽&#xff0c;一位对技术充满热情的探索者和分享者。&#x1f680;&#x1f680; &#x1f31f;特别推荐给大家我的最新专栏《数据结构与算法&#xff1a;初学者入门指南》&#x1f4d8;&am…

【Kubernetes】在k8s1.24及以上版本基于containerd容器运行时测试pod从harbor拉取镜像

基于containerd容器运行时测试pod从harbor拉取镜像 1、安装高版本containerd2、安装docker3、登录harbor上传镜像4、从harbor拉取镜像 1、安装高版本containerd 集群中各个节点都要操作 yum remove containerd.io -y yum install containerd.io-1.6.22* -y cd /etc/containe…

融资项目——获取树形结构的数据

如下图所示&#xff0c;下列数据是一个树形结构数据&#xff0c;行业中包含若干子节点。表的设计如下图&#xff0c;设置了一个id为1的虚拟根节点。&#xff08;本树形结构带虚拟根节点共三层&#xff09; 实现逻辑&#xff1a; 延时展示方法&#xff0c;先展现第二层的信息&a…