【多模态大模型】GLIP:零样本学习 + 目标检测 + 视觉语言大模型

news2025/1/15 17:33:25

GLIP

    • 核心思想
      • GLIP 对比 BLIP、BLIP-2、CLIP
    • 主要问题: 如何构建一个能够在不同任务和领域中以零样本或少样本方式无缝迁移的预训练模型?
        • 统一的短语定位损失
        • 语言意识的深度融合
        • 预训练数据类型的结合
        • 语义丰富数据的扩展
        • 零样本和少样本迁移学习
    • 效果

 


论文:https://arxiv.org/pdf/2112.03857.pdf

代码:https://github.com/microsoft/GLIP

 

核心思想

问题: 在现有的视觉识别任务中,模型通常是针对一组固定的对象类别进行训练的,这限制了它们在现实世界中的应用,因为遇到新的视觉概念时,需要额外的标注数据来进行泛化。

而且,要想理解图片中的细节(如对象检测、分割、姿态估计等),需要对象级别的、富含语义的视觉表征。

方法: GLIP尝试解决上述问题,通过以下步骤:

  1. 统一对象检测和短语定位: 将对象检测任务视为一种无上下文的短语定位任务,而短语定位可以看作是一种有上下文的对象检测任务。这样,两者可以在同一个框架内得到改进。

假设我们有一个图片,其中包含了一只猫和一辆车。

在传统的对象检测任务中,模型需要识别出图片中所有的对象(例如,猫和车),并为它们各自绘制一个边界框。

在短语定位任务中,如果给定一个描述性短语(如“黑色的猫”),模型需要找到图片中与这个短语对应的具体区域。

GLIP将这两个任务统一起来:它不仅学习如何识别和定位图片中的对象,还学习如何根据文本描述来精确地定位这些对象。

这意味着,如果输入是一张含猫和车的图片以及文本提示“黑色的猫”,GLIP能够理解这个提示,并准确地标出图片中黑色猫的位置。

 

  1. 预训练: 使用大量的图片-文本对(27M,包括3M人工标注和24M网络抓取)进行预训练。这些数据不仅包括了丰富的语义信息,还可以自动生成定位框(grounding boxes),从而扩大了学习的概念范围。

为了让GLIP学会这些技能,研究者使用了27M的图片-文本对进行预训练。

这其中包括3M是人工标注的高质量数据,24M是从网上抓取的图片和相应的描述文本。

通过这些数据,GLIP学习到了丰富的视觉概念和语义信息,比如什么是“猫”,它们长什么样,常出现在哪些场景中,以及如何根据不同的描述(例如“黑色的猫”)来识别和定位具体的对象。

 

  1. 转移学习: 预训练后的GLIP模型展示了在各种对象级别识别任务上的零样本和少样本转移能力,即使在模型预训练时没有见过特定图片,也能表现出色。

预训练完成后,GLIP能够在没有额外标注数据的情况下,直接应用到新的对象检测任务上。

比如,当GLIP遇到一个它在预训练数据中没有直接见过的新图片,即使这张图片中的对象是新的或者以新的方式出现,GLIP也能利用它从预训练中学到的知识,来识别和定位图片中的对象。

例如,如果在预训练数据中GLIP学到了如何识别各种各样的猫和车,当它看到一个全新的图片,图片中有一只特别的猫种或者是一种罕见的车型,GLIP仍然能够凭借之前学到的知识来识别和定位这些对象。

并且,如果给GLIP一个具体的描述,比如“在草地上的白色猫”,它也能够理解这个描述,并在图片中找到对应的猫。
 

结果:

  • 在COCO和LVIS数据集上,GLIP模型在零样本设置下表现优异,超过了许多有监督的基准模型。
  • 经过COCO数据集微调后,GLIP在验证集和测试集上的表现超过了之前的最佳模型。
  • 在13个下游对象检测任务中,即使只用一个样本进行训练,GLIP也能与完全监督的模型竞争。

结论: GLIP通过统一对象检测和短语定位任务,并利用大量的图片-文本对进行预训练,成功学习了丰富的、可转移的对象级视觉表征,表现出强大的转移学习能力。

 

GLIP 对比 BLIP、BLIP-2、CLIP

BLIP:跨越视觉-语言界限:BLIP的多任务精细处理策略

BLIP-2:低计算视觉-语言预训练大模型

CLIP:对比预训练 + 文字图像相似度:离奇调查,如何训练视觉大模型?

 
GLIP(Grounded Language-Image Pre-training):

  • 目标:学习对象级别、语言感知的、语义丰富的视觉表征。
  • 方法:GLIP结合了对象检测和短语定位(phrase grounding)任务,通过预训练来统一这两种任务。
  • 特点
    • 利用检测和定位数据改进这两个任务,并引导出好的定位模型。
    • 利用大量图像-文本对通过自训练方式生成定位框,使学习到的表征丰富多样。
  • 性能:在零样本和少样本迁移任务中展示了强大的性能,如直接在COCO和LVIS数据集上评估,没有在预训练中看到任何COCO图像,GLIP也实现了超过许多监督基线的性能。

 
结论:

GLIP强调在对象级别进行语言感知和语义丰富的视觉表征学习,并且特别强调短语定位任务的效率和可扩展性。

与此相比,BLIP和BLIP-2侧重于从预训练的模型启动,以减少训练时的计算成本并提高性能。

CLIP则更注重在图像级别学习视觉表征,并利用大量的图像-文本对进行对比学习,以实现强大的零样本和少样本迁移能力。

以图像识别任务为例,比较GLIP、BLIP/BLIP-2和CLIP的方法和优势:

 

GLIP的例子:

假设我们要识别一张图片中的特定物体(例如,一只戴帽子的猫),并且这张图片附带了一句描述(例如,“一只戴着红色帽子的猫坐在桌子上”)。

GLIP通过短语定位任务学习到的对象级别、语言感知的视觉表征能够准确识别出图片中“戴着红色帽子的猫”的位置,即使这个特定的短语在训练数据中从未出现过。

 

BLIP/BLIP-2的例子:

在相同的任务中,BLIP或BLIP-2可能会使用从大量图像-文本对中预训练的模型来识别图中的猫。

它们不一定能像GLIP那样精细定位帽子,但是它们在预训练阶段计算成本更低,并且能够利用现成的预训练模型(如冻结的图像编码器和语言模型)来提升性能。

 

CLIP的例子:
对于CLIP来说,虽然可能无法具体识别“戴着红色帽子的猫”,但它可以识别出图片中的猫,因为它在图像级别上学习了丰富的视觉表征。

通过分析大量图像-文本对,CLIP模型学会了将图像与其相关的文本概念关联起来,因此在没有具体的对象检测训练的情况下,它可能已经理解了“猫”这一概念,并且能够在零样本或少样本设置中将这种理解转移到识别任务上。

 


主要问题: 如何构建一个能够在不同任务和领域中以零样本或少样本方式无缝迁移的预训练模型?

在GLIP研究中,面临的主要挑战是创建一个能够轻松迁移到各种任务和领域的预训练模型,特别是在这些领域和任务中,模型可能没有接触过足够的样本(即零样本或少样本情况)。
 

统一的短语定位损失
  • 子问题: 如何让模型理解语言中的指令,并将其定位到图像中的具体区域?
  • 子解法: 统一的短语定位损失(Unified Grounding Loss)
  • 这种损失函数结合了对象检测的要素,把对象分类转变为短语定位问题,从而让模型学习如何将文本中的短语与图像中的区域相匹配。
  • 之所以使用此解法,是因为对象检测的传统方法通常局限于预定义的类别集,而短语定位允许模型对任何在文本中提及的对象进行识别,使其在应对开放词汇检测时更加灵活

使用统一的短语定位损失,GLIP模型能够理解“黑色短毛猫”这样的语言描述,并将其定位到图片中对应的区域,即使这种猫的类别在训练数据中未被明确定义过。
 

语言意识的深度融合
  • 子问题: 如何提高模型在细粒度上对图像的理解,让其不仅识别图像中的对象,还能理解这些对象的语言描述?
  • 子解法: 语言感知深度融合(Language-Aware Deep Fusion)
  • 通过在图像编码器和语言编码器之间进行深度融合,模型能够学习到更丰富的语言感知视觉特征,提升模型的短语定位性能。
  • 之所以使用此解法,是因为仅在最后一层进行视觉语言融合(如CLIP所做)可能不足以学习到高质量的语言感知视觉特征,而深度融合可以让模型在整个编码过程中同时考虑视觉和语言信息

通过语言感知深度融合,该模型可以进一步理解“黑色短毛猫在睡觉”的复杂描述 有更多细节,并识别出图像中相对应的睡觉姿势和猫的特征。

 

预训练数据类型的结合
  • 子问题: 如何结合不同类型的数据来提升模型的语义丰富度和迁移能力?
  • 子解法: 结合检测和短语定位数据进行预训练
  • 通过同时使用对象检测数据和短语定位数据进行预训练,模型可以学习到更丰富的语义信息,并改善对不同对象类别的检测能力。
  • 之所以使用此解法,是因为短语定位数据在语义上比传统的对象检测数据更为丰富,能够提供更多的上下文信息,从而帮助模型更好地学习到不同对象的视觉特征

预训练阶段结合了对象检测数据(比如猫的图片)和短语定位数据(比如“黑色短毛猫”的文本描述与相应图片)。

这种数据的结合让模型能够理解和学习更多关于对象和场景的细节。

 

语义丰富数据的扩展
  • 子问题: 如何扩展对象检测的概念池,并且使其涵盖更广泛的视觉概念?
  • 子解法: 利用大规模图像-文本配对数据
  • 使用已经预训练好的GLIP模型(教师模型)来自动为大量网络抓取的图像-文本对生成定位框(grounding boxes),以此来扩展学习数据集。
  • 之所以使用此解法,是因为现有的人工标注数据在视觉概念的覆盖上成本高且有限,而大规模的图像-文本数据可以提供更为丰富的语义信息。

使用大量的图像-文本对来扩展模型的知识库,这包括从互联网抓取的各种图片和它们的描述。

这使得模型能够识别和理解更多种类的场景和对象,即使是它之前没有直接学习过的。

 

零样本和少样本迁移学习
  • 子问题: 如何构建一个预训练模型,使其能够无缝迁移到不同的任务和领域?
  • 子解法: 利用GLIP进行迁移学习
  • 通过在短语定位的基础上对对象检测任务进行重新构想,构建了一个能够适用于各种任务和领域的预训练模型。
  • 之所以使用此解法,是因为短语定位与对象检测在概念上具有很大的相似性,GLIP通过这种重新构想使得模型能够在零样本或少样本的情况下进行有效迁移。

上传了一张新的照片,“在雪地上的白色长毛猫”,尽管这是一个新的场景,模型依旧能够准确识别出来。

 


效果

在这里插入图片描述
GLIP将检测任务重新构想为短语定位任务,通过联合训练图像编码器和语言编码器来预测区域和单词的正确配对。

上图一个女性持有吹风机并戴着防护眼镜的示例,同时提供了文本提示“Person. Bicycle … Hairdryer.”,模型通过深度融合技术学习语言感知的视觉表征。

在这里插入图片描述
GLIP在预测定位中的能力,它能够定位图像中的稀有实体、具有属性的短语,甚至是抽象词汇。

上图 两个例子分别展示了模型如何识别和定位“两个注射器和一个小瓶疫苗”以及一个海滩景色,如“playa esmeralda in holguin, cuba. the view from the top of the beach. beautiful caribbean sea turquoise”。

说明模型不仅可以识别具体的物体,还能理解和定位与属性相关的短语和抽象概念。
 

在这里插入图片描述

GLIP用于目标检测的好处

  • 强大的泛化能力:GLIP能在没有直接经过特定数据集训练的情况下进行有效的目标检测。
  • 优秀的零样本学习性能:GLIP能识别训练数据中未包含的新类别。
  • 在处理稀有类别上的优势:GLIP在LVIS数据集上的表现显示,它在处理少见或稀有对象时的识别能力优于传统模型。
  • 短语定位的精准性:在Flickr30K数据集上,GLIP展示了高精度的短语定位能力,能够准确地将文本描述与图像中的具体区域相匹配。
  • 微调后的性能提升:在COCO数据集上的微调表现优于当前最佳模型,表明其在特定任务上的适应性和提升潜力。

这些表现说明GLIP不仅能够适应新的和未知的目标检测任务,而且其性能可通过针对性训练进一步提升。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1439633.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OpenShift AI - 运行欺诈检测模型和流程

《OpenShift / RHEL / DevSecOps 汇总目录》 说明:本文已经在 OpenShift 4.14 RHODS 2.50 的环境中验证 文章目录 准备运行环境安装 OpenShift AI 环境安装 Minio 对象存储软件创建 Data Science Project创建 Data connection创建 Workbench配置 Model server创建 …

python调用golang中函数方法

一、原因说明:由于simhash方法有多种实现方式,现python中simhash方法与golang中的不一样,需要两者代码生成结果保持一致,故采用python中的代码调用golang编译的so文件来实现。 环境配置:①Windows10系统要有gcc环境&a…

【Git版本控制 03】远程操作

目录 一、克隆远程仓库 二、推送远程仓库 三、拉取远程仓库 四、忽略特殊文件 五、命令配置别名 一、克隆远程仓库 Git是分布式版本控制系统,同⼀个Git仓库,可以分布到不同的机器上。怎么分布呢? 找⼀台电脑充当服务器的⻆⾊&#xff…

幻方(Magic Square)

幻方(Magic Square) 幻方概述 什么是幻方呢?幻方(Magic Square)就是指在nn(n行n列)的方格里填上一些连续的数字,使任意一行、任意一列和对角线上的数字的和都相等。例如有33的3行3…

【操作系统】MacOS虚拟内存统计指标

目录 命令及其结果 参数解读 有趣的实验 在 macOS 系统中,虚拟内存统计指标提供了对系统内存使用情况和虚拟内存操作的重要洞察。通过分析这些指标,我们可以更好地了解系统的性能状况和内存管理情况。 命令及其结果 >>> vm_stat Mach Virtu…

电力负荷预测 | 基于TCN的电力负荷预测(Python)———数据预处理

文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 基于TCN的电力负荷预测(Python) python3.8 keras2.6.0 matplotlib3.5.2 numpy1.19.4 pandas1.4.3 tensorflow==2.6.0

电赛相关——自制模块1

目录 一、双电源供电 原理图 PCB 仿真图 制板文件 二、单电源供电 原理图 PCB 仿真图 制板文件 该模块使用一个双运放,实现对输入信号改变幅度(放大或衰减,可调节,索性叫它变幅器吧)以及隔离缓存&#xff08…

一文读懂转融通

最近多家公司都在讲解关于转融通要求。今天我们就来详细聊聊! 转融通是一种证券借贷机制,它允许机构投资者在融资融券交易中借入或借出证券。 具体来说,机构投资者可以向券商借入证券,或者将持有的证券借给券商,以扩大…

Golang 基础 Go Modules包管理

Golang 基础 Go Modules包管理 在 Go 项目开发中,依赖包管理是一个非常重要的内容,依赖包处理不好,就会导致编译失败,本文将系统介绍下 Go 的依赖包管理工具。 我会首先介绍下 Go 依赖包管理工具的历史,并详细介绍下…

EMQX Enterprise 5.3 发布:审计日志、Dashboard 访问权限控制与 SSO 一站登录

EMQX Enterprise 5.3.0 版本已正式发布! 新版本带来多个企业特性的更新,包括审计日志,Dashboard RBAC 权限控制,以及基于 SSO(单点登录)的一站式登录,提升了企业级部署的安全性、管理性和治理能…

docker proxy 【docker 代理】

第一种 创建代理配置文件 mkdir -p /etc/systemd/system/docker.service.d/ cat <<EOF > /etc/systemd/system/docker.service.d/http-proxy.conf Environment"HTTP_PROXYhttp://192.168.21.101:7890" Environment"HTTPS_PROXYhttp://192.168.21.1…

IP定位技术助力打击网络欺诈

随着网络技术的飞速发展&#xff0c;网络欺诈行为也呈现出愈发猖獗的态势。然而&#xff0c;在这个数字化世界中&#xff0c;IP定位技术正逐渐崭露头角&#xff0c;成为打击网络欺诈的一大利器。本文将从多个方面探讨如何利用IP定位技术解决网络欺诈问题。 IP地址定位技术的基本…

寒假作业-day5

1>现有无序序列数组为23,24,12,5,33,5347&#xff0c;请使用以下排序实现编程 函数1:请使用冒泡排序实现升序排序 函数2:请使用简单选择排序实现升序排序 函数3:请使用直接插入排序实现升序排序 函数4:请使用插入排序实现升序排序 代码&#xff1a; #include<stdio.h&g…

MPLS VPN功能组件

VPN实例 VPN实例即为VPN路由转发表VRF&#xff0c;不同VPN之间的路由隔离通过VPN实例实现&#xff0c;PE上存在多个路由转发表&#xff0c;包括一个公网路由转发表&#xff0c;以及一个或多个VPN路由转发表。 PE为每个直接相连的Site建立并维护专门的VPN实例&#xff0c;VPN实…

C#中实现串口通讯和网口通讯(使用SerialPort和Socket类)

仅作自己学习使用 1 准备部份 串口通讯需要两个调试软件commix和Virtual Serial Port Driver&#xff0c;分别用于监视串口和创造虚拟串口。网口通讯需要一个网口调试助手&#xff0c;网络上有很多资源&#xff0c;我在这里采用的是微软商店中的TCP/UDP网络调试助手&#xff0…

Qt Windows和Android使用MuPDF预览PDF文件

文章目录 1. Windows MuPDF编译2. Android MuPDF编译3. 引用 MuPDF 库4. 解析本地PDF文件 1. Windows MuPDF编译 使用如下命令将MuPDF的源码克隆到本地 git clone --recursive git://git.ghostscript.com/mupdf.git直接用VS&#xff0c;打开 mupdf/platform/win32/mupdf.sln …

多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测

多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测 目录 多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预…

阿里云ECS服务器Linux安装Mysql8

链接&#xff1a;https://pan.baidu.com/s/1s9j7OhiOMV9e9Qq9GDbysA 提取码&#xff1a;dd5a --来自百度网盘超级会员V5的分享 Mysql官网:MySQL 关于Mysql Yum Repository介绍可以看下 更加简单 关于X86和ARM 传到服务器 进入所在包 cd /usr/local/develop/mysql8 解压 …

Appium使用初体验之参数配置,简单能够运行起来

一、服务器配置 Appium Server配置与Appium Server GUI&#xff08;可视化客户端&#xff09;中的配置对应&#xff0c;尤其是二者如果不在同一台机器上&#xff0c;那么就需要配置Appium Server GUI所在机器的IP&#xff08;Appium Server GUI的HOST也需要配置本机IP&#xf…

网络安全产品之认识准入控制系统

文章目录 一、什么是准入控制系统二、准入控制系统的主要功能1. 接入设备的身份认证2. 接入设备的安全性检查 三、准入控制系统的工作原理四、准入控制系统的特点五、准入控制系统的部署方式1. 网关模式2. 控制旁路模式 六、准入控制系统的应用场景七、企业如何利用准入控制系统…