C++力扣题目494--目标和 474--一和零

news2025/1/15 23:25:12

494.目标和

力扣题目链接(opens new window)

难度:中等

给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。

返回可以使最终数组和为目标数 S 的所有添加符号的方法数。

示例:

  • 输入:nums: [1, 1, 1, 1, 1], S: 3
  • 输出:5

解释:

  • -1+1+1+1+1 = 3
  • +1-1+1+1+1 = 3
  • +1+1-1+1+1 = 3
  • +1+1+1-1+1 = 3
  • +1+1+1+1-1 = 3

一共有5种方法让最终目标和为3。

提示:

  • 数组非空,且长度不会超过 20 。
  • 初始的数组的和不会超过 1000 。
  • 保证返回的最终结果能被 32 位整数存下。

#思路

如果对背包问题不都熟悉先看这两篇:

  • 动态规划:关于01背包问题,你该了解这些!(opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)

如果跟着「代码随想录」一起学过回溯算法系列 (opens new window)的录友,看到这道题,应该有一种直觉,就是感觉好像回溯法可以爆搜出来。

事实确实如此,下面我也会给出相应的代码,只不过会超时。

这道题目咋眼一看和动态规划背包啥的也没啥关系。

本题要如何使表达式结果为target,

既然为target,那么就一定有 left组合 - right组合 = target。

left + right = sum,而sum是固定的。right = sum - left

公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。

target是固定的,sum是固定的,left就可以求出来。

此时问题就是在集合nums中找出和为left的组合。

#回溯算法

在回溯算法系列中,一起学过这道题目回溯算法:39. 组合总和 (opens new window)的录友应该感觉很熟悉,这不就是组合总和问题么?

此时可以套组合总和的回溯法代码,几乎不用改动。

当然,也可以转变成序列区间选+ 或者 -,使用回溯法,那就是另一个解法。

我也把代码给出来吧,大家可以了解一下,回溯的解法,以下是本题转变为组合总和问题的回溯法代码:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
        if (sum == target) {
            result.push_back(path);
        }
        // 如果 sum + candidates[i] > target 就终止遍历
        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            sum += candidates[i];
            path.push_back(candidates[i]);
            backtracking(candidates, target, sum, i + 1);
            sum -= candidates[i];
            path.pop_back();

        }
    }
public:
    int findTargetSumWays(vector<int>& nums, int S) {
        int sum = 0;
        for (int i = 0; i < nums.size(); i++) sum += nums[i];
        if (S > sum) return 0; // 此时没有方案
        if ((S + sum) % 2) return 0; // 此时没有方案,两个int相加的时候要各位小心数值溢出的问题
        int bagSize = (S + sum) / 2; // 转变为组合总和问题,bagsize就是要求的和

        // 以下为回溯法代码
        result.clear();
        path.clear();
        sort(nums.begin(), nums.end()); // 需要排序
        backtracking(nums, bagSize, 0, 0);
        return result.size();
    }
};


 

当然以上代码超时了。

也可以使用记忆化回溯,但这里我就不在回溯上下功夫了,直接看动规吧

#动态规划

如何转化为01背包问题呢。

假设加法的总和为x,那么减法对应的总和就是sum - x。

所以我们要求的是 x - (sum - x) = target

x = (target + sum) / 2

此时问题就转化为,装满容量为x的背包,有几种方法

这里的x,就是bagSize,也就是我们后面要求的背包容量。

大家看到(target + sum) / 2 应该担心计算的过程中向下取整有没有影响。

这么担心就对了,例如sum 是5,S是2的话其实就是无解的,所以:

(C++代码中,输入的S 就是题目描述的 target)
if ((S + sum) % 2 == 1) return 0; // 此时没有方案

同时如果 S的绝对值已经大于sum,那么也是没有方案的。

(C++代码中,输入的S 就是题目描述的 target)
if (abs(S) > sum) return 0; // 此时没有方案

再回归到01背包问题,为什么是01背包呢?

因为每个物品(题目中的1)只用一次!

这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。

本题则是装满有几种方法。其实这就是一个组合问题了。

  1. 确定dp数组以及下标的含义

dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法

其实也可以使用二维dp数组来求解本题,dp[i][j]:使用 下标为[0, i]的nums[i]能够凑满j(包括j)这么大容量的包,有dp[i][j]种方法。

下面我都是统一使用一维数组进行讲解, 二维降为一维(滚动数组),其实就是上一层拷贝下来,这个我在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)也有介绍。

  1. 确定递推公式

有哪些来源可以推出dp[j]呢?

只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。

例如:dp[j],j 为5,

  • 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
  • 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
  • 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
  • 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
  • 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包

那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

所以求组合类问题的公式,都是类似这种:

dp[j] += dp[j - nums[i]]

这个公式在后面在讲解背包解决排列组合问题的时候还会用到!

  1. dp数组如何初始化

从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。

这里有录友可能认为从dp数组定义来说 dp[0] 应该是0,也有录友认为dp[0]应该是1。

其实不要硬去解释它的含义,咱就把 dp[0]的情况带入本题看看应该等于多少。

如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法。

所以本题我们应该初始化 dp[0] 为 1。

可能有同学想了,那 如果是 数组[0,0,0,0,0] target = 0 呢。

其实 此时最终的dp[0] = 32,也就是这五个零 子集的所有组合情况,但此dp[0]非彼dp[0],dp[0]能算出32,其基础是因为dp[0] = 1 累加起来的。

dp[j]其他下标对应的数值也应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来。

  1. 确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲过对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序。

  1. 举例推导dp数组

输入:nums: [1, 1, 1, 1, 1], S: 3

bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4

dp数组状态变化如下:

C++代码如下:

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int S) {
        int sum = 0;
        for (int i = 0; i < nums.size(); i++) sum += nums[i];
        if (abs(S) > sum) return 0; // 此时没有方案
        if ((S + sum) % 2 == 1) return 0; // 此时没有方案
        int bagSize = (S + sum) / 2;
        vector<int> dp(bagSize + 1, 0);
        dp[0] = 1;
        for (int i = 0; i < nums.size(); i++) {
            for (int j = bagSize; j >= nums[i]; j--) {
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[bagSize];
    }
};

  • 时间复杂度:O(n × m),n为正数个数,m为背包容量
  • 空间复杂度:O(m),m为背包容量

#总结

此时 大家应该不禁想起,我们之前讲过的回溯算法:39. 组合总和 (opens new window)是不是应该也可以用dp来做啊?

是的,如果仅仅是求个数的话,就可以用dp,但回溯算法:39. 组合总和 (opens new window)要求的是把所有组合列出来,还是要使用回溯法爆搜的。

本题还是有点难度,大家也可以记住,在求装满背包有几种方法的情况下,递推公式一般为:

dp[j] += dp[j - nums[i]];

后面我们在讲解完全背包的时候,还会用到这个递推公式

 

474.一和零

力扣题目链接(opens new window)

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

示例 1:

  • 输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3

  • 输出:4

  • 解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。 其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

  • 输入:strs = ["10", "0", "1"], m = 1, n = 1
  • 输出:2
  • 解释:最大的子集是 {"0", "1"} ,所以答案是 2 。

提示:

  • 1 <= strs.length <= 600
  • 1 <= strs[i].length <= 100
  • strs[i] 仅由 '0' 和 '1' 组成
  • 1 <= m, n <= 100

#思路

如果对背包问题不都熟悉先看这两篇:

  • 动态规划:关于01背包问题,你该了解这些!(opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)

这道题目,还是比较难的,也有点像程序员自己给自己出个脑筋急转弯,程序员何苦为难程序员呢。

来说题,本题不少同学会认为是多重背包,一些题解也是这么写的。

其实本题并不是多重背包,再来看一下这个图,捋清几种背包的关系

416.分割等和子集1

多重背包是每个物品,数量不同的情况。

本题中strs 数组里的元素就是物品,每个物品都是一个!

而m 和 n相当于是一个背包,两个维度的背包

理解成多重背包的同学主要是把m和n混淆为物品了,感觉这是不同数量的物品,所以以为是多重背包。

但本题其实是01背包问题!

只不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。

开始动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]

  1. 确定递推公式

dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。

dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。

然后我们在遍历的过程中,取dp[i][j]的最大值。

所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。

这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。

  1. dp数组如何初始化

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中已经讲解了,01背包的dp数组初始化为0就可以。

因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。

  1. 确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲到了01背包为什么一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!

那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n。

代码如下:

for (string str : strs) { // 遍历物品
    int oneNum = 0, zeroNum = 0;
    for (char c : str) {
        if (c == '0') zeroNum++;
        else oneNum++;
    }
    for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!
        for (int j = n; j >= oneNum; j--) {
            dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
        }
    }
}

有同学可能想,那个遍历背包容量的两层for循环先后循序有没有什么讲究?

没讲究,都是物品重量的一个维度,先遍历哪个都行!

  1. 举例推导dp数组

以输入:["10","0001","111001","1","0"],m = 3,n = 3为例

最后dp数组的状态如下所示:

474.一和零

以上动规五部曲分析完毕,C++代码如下:

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        vector<vector<int>> dp(m + 1, vector<int> (n + 1, 0)); // 默认初始化0
        for (string str : strs) { // 遍历物品
            int oneNum = 0, zeroNum = 0;
            for (char c : str) {
                if (c == '0') zeroNum++;
                else oneNum++;
            }
            for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!
                for (int j = n; j >= oneNum; j--) {
                    dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
                }
            }
        }
        return dp[m][n];
    }
};

  • 时间复杂度: O(kmn),k 为strs的长度
  • 空间复杂度: O(mn)

#总结

不少同学刷过这道题,可能没有总结这究竟是什么背包。

此时我们讲解了0-1背包的多种应用,

  • 纯 0 - 1 背包 (opens new window)是求 给定背包容量 装满背包 的最大价值是多少。
  • 416. 分割等和子集 (opens new window)是求 给定背包容量,能不能装满这个背包。
  • 1049. 最后一块石头的重量 II (opens new window)是求 给定背包容量,尽可能装,最多能装多少
  • 494. 目标和 (opens new window)是求 给定背包容量,装满背包有多少种方法。
  • 本题是求 给定背包容量,装满背包最多有多少个物品。

所以在代码随想录中所列举的题目,都是 0-1背包不同维度上的应用,大家可以细心体会!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1439591.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

通过nginx学习linux进程名的修改

目录 1. 缘起2. 背景知识3. 源码分析3.1 准备工作3.2 设置进程名字 1. 缘起 在运行nginx的时候&#xff0c;用ps查看nginx的进程信息&#xff0c;可能的输出如下&#xff1a; root 42169 3105 0 16:51 ? 00:00:00 nginx: master process ./objs/nginx root …

ChatGPT论文指南|ChatGPT论文写作过程中6个润色与查重提示词

论文完成初稿之后&#xff0c;一般情况下&#xff0c;宝子们还需要找专家给我们提出评审意见。找专家评审其实并不容易&#xff0c;即使对老师来说&#xff0c;找人评审论文也是一件苦活。我们这个时候可以通过文字提示让 ChatGPT充当我们的评审专家&#xff0c;为论文提出问题…

spring boot和spring cloud项目中配置文件application和bootstrap加载顺序

在前面的文章基础上 https://blog.csdn.net/zlpzlpzyd/article/details/136060312 日志配置 logback-spring.xml <?xml version"1.0" encoding"UTF-8"?> <configuration scan"true" scanPeriod"10000000 seconds" debug…

双非本科准备秋招(19.2)—— 设计模式之保护式暂停

一、wait & notify wait能让线程进入waiting状态&#xff0c;这时候就需要比较一下和sleep的区别了。 sleep vs wait 1) sleep 是 Thread 方法&#xff0c;而 wait 是 Object 的方法 2) sleep 不需要强制和 synchronized 配合使用&#xff0c;但 wait 强制和 s…

分享一下 uniapp 打包安卓apk

首先需要安装 Java 环境&#xff0c;这里就不做解释了 第二步&#xff1a;打开 mac 终端 / cmd 命令行工具 使用keytool -genkey命令生成证书 keytool -genkey -alias testalias -keyalg RSA -keysize 2048 -validity 36500 -keystore test.keystore *testalias 是证书别名&am…

年货大数据(电商平台年货节数据):水果销售额增长72%,海鲜肉类涨幅高于蔬菜

春节临近&#xff0c;生鲜又成了线上线下“叫卖”狠&#xff0c;竞争大&#xff0c;盈利好的行业之一。无论是线下商超&#xff0c;还是线上电商&#xff0c;生鲜行业在年货节期间不愁没有市场需求。 根据鲸参谋数据显示&#xff0c;1月前三周京东平台生鲜市场整体销量超3300万…

C++初阶:容器(Containers)vector常用接口详解

介绍完了string类的相关内容后&#xff1a;C初阶&#xff1a;适合新手的手撕string类&#xff08;模拟实现string类&#xff09; 接下来进入新的篇章&#xff0c;容器vector介绍&#xff1a; 文章目录 1.vector的初步介绍2.vector的定义&#xff08;constructor&#xff09;3.v…

5G NR 信道号计算

一、5G NR的频段 增加带宽是增加容量和传输速率最直接的方法&#xff0c;目前5G最大带宽将会达到400MHz&#xff0c;考虑到目前频率占用情况&#xff0c;5G将不得不使用高频进行通信。 3GPP协议定义了从Sub6G(FR1)到毫米波(FR2)的5G目标频谱。 其中FR1是5G的核心频段&#xff0…

算法学习打卡day47|单调栈系列题目

单调栈题目思路 通常是一维数组&#xff0c;要寻找任一个元素的右边或者左边第一个比自己大或者小的元素的位置&#xff0c;此时我们就要想到可以用单调栈了。时间复杂度为O(n)。单调栈的本质是空间换时间&#xff0c;因为在遍历的过程中需要用一个栈来记录右边第一个比当前元…

大模型2024规模化场景涌现,加速云计算走出第二增长曲线

导读&#xff1a;2024&#xff0c;大模型第一批规模化应用场景已出现。 如果说“百模大战”是2023年国内AI产业的关键词&#xff0c;那么2024年我们将正式迈进“应用为王”的新阶段。 不少业内观点认为&#xff0c;2024年“百模大战”将逐渐收敛甚至洗牌&#xff0c;而大模型在…

DC-7靶机渗透详细流程

信息收集&#xff1a; 1.存活扫描&#xff1a; 由于靶机和kali都是nat的网卡&#xff0c;都在一个网段&#xff0c;我们用arp-scan会快一点&#xff1a; arp-scan arp-scan -I eth0 -l └─# arp-scan -I eth0 -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:dd:ee:6…

如何应对Android面试官->实战高级UI,用自定义View画一条锦鲤(上)

前言 如何用自定义View画一条鱼&#xff0c;其中涉及到哪些知识点&#xff1f;我们先上效果图&#xff1a; 涉及的知识点&#xff1a; 整体可以分为三大步骤 小鱼的绘制小鱼的摆动点击之后小鱼的游动 小鱼的绘制 想实现小鱼的绘制&#xff0c;我们首先需要分解下这个小鱼都由…

re:从0开始的CSS学习之路 5. 颜色单位

0. 写在前面 没想到在CSS里也要再次了解这些颜色单位&#xff0c;感觉回到了大二的数字图像处理&#xff0c;可惜现在已经大四了&#xff0c;感觉并没有学会什么AI的东西 1. 颜色单位 预定义颜色名&#xff1a;HTML和CSS规定了147种颜色名。例如&#xff1a;red yellow green …

如何使用websocket

如何使用websocket 之前看到过一个面试题&#xff1a;吃饭点餐的小程序里&#xff0c;同一桌的用户点餐菜单如何做到的实时同步&#xff1f; 答案就是&#xff1a;使用websocket使数据变动时服务端实时推送消息给其他用户。 最近在我们自己的项目中我也遇到了类似问题&#xf…

Django模板(二)

标签if 标签在渲染过程中提供使用逻辑的方法,比如:if和for 标签被 {% 和 %} 包围,如下所示: 由于在模板中,没有办法通过代码缩进判断代码块,所以控制标签都需要有结束的标签 if判断标签{% if %} {% endif %} : # athlete_list 不为空 {% if athlete_list %}# 输出 ath…

Qt 常用算法及正则表达式

目录 常用算法 正则表达式 常用算法 double c qAbs(a)&#xff0c;函数 qAbs() 返回 double 型数值 a 的绝对值 double max qMax(b,c)&#xff0c;函数 qMax() 返回两个数值中的最大值 int bnqRound(b)&#xff0c;返回一个与浮点数最接近的整数值(四舍五入) int cn q…

PyTorch深度学习实战(23)——从零开始实现SSD目标检测

PyTorch深度学习实战&#xff08;23&#xff09;——从零开始实现SSD目标检测 0. 前言1. SSD 目标检测模型1.1 SSD 网络架构1.2 利用不同网络层执行边界框和类别预测1.3 不同网络层中默认框的尺寸和宽高比1.4 数据准备1.5 模型训练 2. 实现 SSD 目标检测2.1 SSD300 架构2.2 Mul…

【Git版本控制 02】分支管理

目录 一、创建分支 二、切换分支 三、合并分支 四、删除分支 五、合并冲突 六、分支策略 七、bug分支 一、创建分支 # 当前仓库只有 master 一个主分支 # 可通过 git branch 是进行分支管理的命令&#xff0c;可通过不同参数对分支进行查看、创建、删除(base) [rootloc…

FXTM富拓监管变更!2024开年连续3家交易商注销牌照

交易商的监管信息是经常发生变更的&#xff0c;即使第一次投资时查询平台监管牌照&#xff0c;投资者仍需持续关注其监管动态。千万不要以为第一步审核好后就万事大吉了&#xff01; 2024年开年&#xff0c;就有3家交易商的重要信息发生变更&#xff0c;注销其金融监管牌照&…

Canvas的js库:Konva.js-像操作DOM一样,操作canvas

hello&#xff0c;我是贝格前端工场&#xff0c;最近在学习canvas&#xff0c;分享一些canvas的一些知识点笔记&#xff0c;本期分享Konva.js这个canvas框架&#xff0c;欢迎老铁们一同学习&#xff0c;欢迎关注&#xff0c;如有前端项目可以私信贝格。 Konva.js是一个强大的HT…