互联网加竞赛 基于深度学习的视频多目标跟踪实现

news2025/1/17 0:21:49

文章目录

  • 1 前言
  • 2 先上成果
  • 3 多目标跟踪的两种方法
    • 3.1 方法1
    • 3.2 方法2
  • 4 Tracking By Detecting的跟踪过程
    • 4.1 存在的问题
    • 4.2 基于轨迹预测的跟踪方式
  • 5 训练代码
  • 6 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的视频多目标跟踪实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 先上成果

在这里插入图片描述

3 多目标跟踪的两种方法

3.1 方法1

基于初始化帧的跟踪,在视频第一帧中选择你的目标,之后交给跟踪算法去实现目标的跟踪。这种方式基本上只能跟踪你第一帧选中的目标,如果后续帧中出现了新的物体目标,算法是跟踪不到的。这种方式的优点是速度相对较快。缺点很明显,不能跟踪新出现的目标。

3.2 方法2

基于目标检测的跟踪,在视频每帧中先检测出来所有感兴趣的目标物体,然后将其与前一帧中检测出来的目标进行关联来实现跟踪的效果。这种方式的优点是可以在整个视频中跟踪随时出现的新目标,当然这种方式要求你前提得有一个好的“目标检测”算法。

学长主要分享Option2的实现原理,也就是Tracking By Detecting的跟踪方式。

4 Tracking By Detecting的跟踪过程

**Step1:**使用目标检测算法将每帧中感兴趣的目标检测出来,得到对应的(位置坐标, 分类, 可信度),假设检测到的目标数量为M;

**Step2:**通过某种方式将Step1中的检测结果与上一帧中的检测目标(假设上一帧检测目标数量为N)一一关联起来。换句话说,就是在M*N个Pair中找出最像似的Pair。

对于Step2中的“某种方式”,其实有多种方式可以实现目标的关联,比如常见的计算两帧中两个目标之间的欧几里得距离(平面两点之间的直线距离),距离最短就认为是同一个目标,然后通过匈牙利算法找出最匹配的Pair。当让,你还可以加上其他的判断条件,比如我用到的IOU,计算两个目标Box(位置大小方框)的交并比,该值越接近1就代表是同一个目标。还有其他的比如判断两个目标的外观是否相似,这就需要用到一种外观模型去做比较了,可能耗时更长。

在关联的过程中,会出现三种情况:

1)在上一帧中的N个目标中找到了本次检测到的目标,说明正常跟踪到了;

2)在上一帧中的N个目标中没有找到本次检测到的目标,说明这个目标是这一帧中新出现的,所以我们需要把它记录下来,用于下下一次的跟踪关联;

3)在上一帧中存在某个目标,这一帧中并没有与之关联的目标,那么说明该目标可能从视野中消失了,我们需要将其移除。(注意这里的可能,因为有可能由于检测误差,在这一帧中该目标并没有被检测到)

在这里插入图片描述

4.1 存在的问题

上面提到的跟踪方法在正常情况下都能够很好的工作,但是如果视频中目标运动得很快,前后两帧中同一个目标运动的距离很远,那么这种跟踪方式就会出现问题。

在这里插入图片描述
如上图,实线框表示目标在第一帧的位置,虚线框表示目标在第二帧的位置。当目标运行速度比较慢的时候,通过之前的跟踪方式可以很准确的关联(A, A’)和(B,
B’)。但是当目标运行速度很快(或者隔帧检测)时,在第二帧中,A就会运动到第一帧中B的位置,而B则运动到其他位置。这个时候使用上面的关联方法就会得到错误的结果。

那么怎样才能更加准确地进行跟踪呢?

4.2 基于轨迹预测的跟踪方式

既然通过第二帧的位置与第一帧的位置进行对比关联会出现误差,那么我们可以想办法在对比之前,先预测目标的下一帧会出现的位置,然后与该预测的位置来进行对比关联。这样的话,只要预测足够精确,那么几乎不会出现前面提到的由于速度太快而存在的误差

在这里插入图片描述

如上图,我们在对比关联之前,先预测出A和B在下一帧中的位置,然后再使用实际的检测位置与预测的位置进行对比关联,可以完美地解决上面提到的问题。理论上,不管目标速度多么快,都能关联上。那么问题来了,怎么预测目标在下一帧的位置?

方法有很多,可以使用卡尔曼滤波来根据目标前面几帧的轨迹来预测它下一帧的位置,还可以使用自己拟合出来的函数来预测下一帧的位置。实际过程中,我是使用拟合函数来预测目标在下一帧中的位置。

在这里插入图片描述
如上图,通过前面6帧的位置,我可以拟合出来一条(T->XY)的曲线(注意不是图中的直线),然后预测目标在T+1帧的位置。具体实现很简单,Python中的numpy库中有类似功能的方法。

5 训练代码

这里记录一下训练代码,来日更新

 if FLAGS.mode == 'eager_tf':
        # Eager mode is great for debugging
        # Non eager graph mode is recommended for real training
        avg_loss = tf.keras.metrics.Mean('loss', dtype=tf.float32)
        avg_val_loss = tf.keras.metrics.Mean('val_loss', dtype=tf.float32)

        for epoch in range(1, FLAGS.epochs + 1):
            for batch, (images, labels) in enumerate(train_dataset):
                with tf.GradientTape() as tape:
                    outputs = model(images, training=True)
                    regularization_loss = tf.reduce_sum(model.losses)
                    pred_loss = []
                    for output, label, loss_fn in zip(outputs, labels, loss):
                        pred_loss.append(loss_fn(label, output))
                    total_loss = tf.reduce_sum(pred_loss) + regularization_loss

                grads = tape.gradient(total_loss, model.trainable_variables)
                optimizer.apply_gradients(
                    zip(grads, model.trainable_variables))

                logging.info("{}_train_{}, {}, {}".format(
                    epoch, batch, total_loss.numpy(),
                    list(map(lambda x: np.sum(x.numpy()), pred_loss))))
                avg_loss.update_state(total_loss)

            for batch, (images, labels) in enumerate(val_dataset):
                outputs = model(images)
                regularization_loss = tf.reduce_sum(model.losses)
                pred_loss = []
                for output, label, loss_fn in zip(outputs, labels, loss):
                    pred_loss.append(loss_fn(label, output))
                total_loss = tf.reduce_sum(pred_loss) + regularization_loss

                logging.info("{}_val_{}, {}, {}".format(
                    epoch, batch, total_loss.numpy(),
                    list(map(lambda x: np.sum(x.numpy()), pred_loss))))
                avg_val_loss.update_state(total_loss)

            logging.info("{}, train: {}, val: {}".format(
                epoch,
                avg_loss.result().numpy(),
                avg_val_loss.result().numpy()))

            avg_loss.reset_states()
            avg_val_loss.reset_states()
            model.save_weights(
                'checkpoints/yolov3_train_{}.tf'.format(epoch))

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1439314.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VRRP配置

目录 网络拓扑图 配置要求 配置步骤 网络拓扑图 配置要求 按照图示配置 IP 地址和网关在 SW1,SW2,SW3 上创建 Vlan10 和 Vlan20,对应 IP 网段如图,交换机之间链路允许所有 VLAN 通过在 SW1 和 SW2 上配置 VRRP,要求…

qt/c++实现表情选择框

💂 个人主页:pp不会算法^ v ^ 🤟 版权: 本文由【pp不会算法v】原创、在CSDN首发、需要转载请联系博主 💬 如果文章对你有帮助、欢迎关注、点赞、收藏(一键三连)和订阅专栏哦 实现功能 。编解码的设计 。映射关系设计 。匹配机制设计 演示效…

DFS深度优先搜索与回溯算法

目录 递归遍历的三步骤: DFS/回溯模板 练习 1.三角形路径和最大搜索 (一)前序DFS(从上至下搜索,实际是暴力解法,测试超时) (二)后序DFS(自底向上搜索&am…

pycharm像jupyter一样在控制台查看后台变量

更新下:这个一劳永逸不用一个一个改 https://blog.csdn.net/Onlyone_1314/article/details/109347481 右上角运行

【misc】ctfshow--CTF的一生如履薄冰

解压的附件如下: 666.zip这个压缩包是要密码的,打开txt看一下 这个应该spam encode了 直接解密:spammimic - decode 解密结果为:hppy_n3w_y3ar_every_ctf3r_2024_g0g0g0!!!这个就是压缩包的密码,解压 又是一个加密的…

Centos8保姆级安装教程

1.下载地址 Downloadhttps://www.centos.org/download/ 2.安装教程 第一步创建新的虚拟机 第二步自定义高级 第三步这里是选择系统的兼容性,默认就可以 之后直接下一步 第四步选择稍后安装操作系统 之后点击下一步 第五步选择操作系统Linux 安装的是centos8 64位…

WordPress如何自建txt文本经典语录并随机显示一句话经典语录?

前面跟大家分享的『WordPress集成一言(Hitokoto)API经典语句功能』一文中就提供有自创API,其中懿古今顶部左上角显示的经典语录用的就是自建一个txt文本文件,然后再在前端网页指定位置随机显示语录。具体操作方法如下:…

网神 SecGate 3600 防火墙 route_ispinfo_import_save 文件上传漏洞复现

0x01 产品简介 网神SecGate 3600防火墙是基于状态检测包过滤和应用级代理的复合型硬件防火墙,是专门面向大中型企业、政府、军队、高校等用户开发的新一代专业防火墙设备,支持外部攻击防范、内网安全、网络访问权限控制、网络流量监控和带宽管理、动态路由、网页内容过滤、邮…

踩坑实录(Third Day)

临近年关,同事们该回家的也都回家了,所以我对工作的欲望不是很强烈,所以就主要是自己学习了一下,在 B 站看看视频,自己敲代码,所以今天没遇到什么坑,但是可以分享一下之前踩到的两个坑。 此为第…

PCIE Order Set

1 Training Sequence Training Sequence是由Order Set(OS) 组成,它们主要是用于bit aligment,symbol aligment,交换物理层的参数。当data_rate 2.5GT or 5GT 它们不会被扰码(scramble),当date_rate 8GT or higher 根据特殊的规…

Rust开发WASM,WASM Runtime运行

安装wasm runtime curl https://wasmtime.dev/install.sh -sSf | bash 查看wasmtime的安装路径 安装target rustup target add wasm32-wasi 创建测试工程 cargo new wasm_wasi_demo 编译工程 cargo build --target wasm32-wasi 运行 wasmtime ./target/wasm32-wasi/d…

3060ti显卡+cuda12.1+win10编译安装生成fastdeploy的c++与python库

在cuda12中,调用官方发布的fastdeploy会出现报错,故此自行编译fastdeploy库。 官网编译教程:https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/gpu.md 可选编译选项 编译选项 无论是在何平台编译,编译时仅根据需求修改如下选项,勿…

C语言笔试题之实现C库函数 strstr()(设置标志位)

实例要求: 1、请你实现C库函数strstr()(stdio.h & string.h),请在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标(下标从 0 开始);2、函数声明:int strStr(char* h…

使用maven命令安装Oracle的jar包到本地仓库

mvn install:install-file -DgroupIdcom.oracle -DartifactIdojdbc6 -Dversion11.2.0.4 -Dpackagingjar -DfileD:\ojdbc6-11.2.0.4.jar ojdbc6-11.2.0.4.jar 下载 链接:https://pan.baidu.com/s/1SqO3Ug7KF8kGr9-jOy3MJQ 提取码:36p9

【GAMES101】Lecture 18 高级外观建模

外观就是材质,就是BRDF,然后对于不同的模型,这个材质的计算不太一样 目录 非表面模型 参与介质 头发 皮毛-动物毛发 颗粒材质(Granular material) 表面模型 半透明材质(Translucent material&#…

17:定时器编程实战

1、实验目的 (1)使用定时器来完成LED闪烁 (2)原来实现闪烁时中间的延迟是用delay函数实现的,在delay的过程中CPU要一直耗在这里不能去做别的事情。这是之前的缺点 (3)本节用定时器来定一个时间(譬如0.3s),在这个定时器定时时间内…

相机图像质量研究(8)常见问题总结:光学结构对成像的影响--工厂调焦

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结:光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结:光学结构对成…

【DIY】断电报警电路,电源监控装置

这个微小的断电报警电路是一种电源监控装置,将掀起的压电扬声器当交流电网电源切断。这表明一些功率的关键仪器如安装在医院照料装置供电损失很有帮助。报警激活在正确的时间是有用信号有停电,应采取紧急行动提供了另一种供电恢复的情况。 这是一个9V电…

【开源】基于JAVA+Vue+SpringBoot的停车场收费系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 停车位模块2.2 车辆模块2.3 停车收费模块2.4 IC卡模块2.5 IC卡挂失模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 停车场表3.2.2 车辆表3.2.3 停车收费表3.2.4 IC 卡表3.2.5 IC 卡挂失表 四、系统实现五、核心代码…

【http】2、http request header Origin 属性、跨域 CORS、同源、nginx 反向代理、预检请求

文章目录 一、Origin 含义二、跨源资源共享:**Cross-Origin Resource Sharing** CORS2.1 跨域的定义2.2 功能概述2.3 场景示例2.3.1 简单请求2.3.2 Preflighted requests:预检请求 2.4 header2.4.1 http request header2.4.1.1 Origin2.4.1.2 Access-Con…