【MATLAB】使用梯度提升树在回归预测任务中进行特征选择(深度学习的数据集处理)

news2025/1/8 20:48:12

1.梯度提升树在神经网络的应用

        使用梯度提升树进行特征选择的好处在于可以得到特征的重要性分数,从而识别出对目标变量预测最具影响力的特征。这有助于简化模型并提高其泛化能力,减少过拟合的风险,并且可以加快模型训练和推理速度。此外,特征选择可以帮助理解数据,并为进一步的特征工程提供指导,有效地提高模型的预测性能。
        梯度提升树(GBT)是一种强大的监督学习算法,常用于回归和分类问题。通过利用多棵决策树的集成学习方式,GBT 能够捕获非线性关系、处理复杂的数据结构,并对特征之间的相互作用进行建模。因此,使用梯度提升树进行特征选择可以帮助构建更简洁、高效的模型,提高预测准确性,同时保持较好的解释性。

通俗点讲就是,用科学、合理的方法去除掉数据集中不需要的特征。常用在回归预测任务的数据集处理中(也就是N个输入特征,一个输出特征)。

2.代码实现

这一部分主要是进行环境设置。关闭了 MATLAB 的警告信息显示,关闭所有先前打开的图形窗口,清除了 MATLAB 工作区中的所有变量,并清空命令窗口。

warning off % 关闭警告信息显示
close all % 关闭所有图形窗口
clear % 清除工作区变量
clc % 清空命令窗口

这里是用 readtable 函数从名为 "01.csv" 的CSV文件中读取数据并将其存储在变量 data 中。如果数据文件不包含表头,则需要使用 readmatrix 函数。

data = readtable('01.csv'); % 如果数据文件不包含表头,请使用readmatrix函数

这段代码将数据拆分为特征和目标变量。其中 X 存储假设前 2000 行数据的前 6 列是特征,y 存储假设前 2000 行数据的最后一列是目标变量。

X = data{1:2000, 1:6}; % 假设前6列是特征
y = data{1:2000, 7};   % 假设最后一列是目标变量

这部分使用 fitensemble 函数构建了一个包含 100 棵树的 LSBoost 集成模型,用于回归任务。

ens = fitensemble(X, y, 'LSBoost', 100, 'Tree', 'Type', 'regression');

在这个部分中,计算了特征的重要性得分,并将其进行了归一化处理。然后将其显示出来。

featureImportance = predictorImportance(ens);
normalizedFeatureImportance = featureImportance / sum(featureImportance);
disp(normalizedFeatureImportance);

这一部分可视化了特征重要性得分,通过绘制条形图展示各个特征的重要性。

bar(normalizedFeatureImportance);
xlabel('特征');
ylabel('重要性得分');
title('特征重要性');

这一部分代码输出了最重要的四个特征,并重新设置了图表横坐标。(笔者的数据集格式为6个输入一个输出的风力发电机功率数据集)

topFeaturesNames = {'湿度', '真实风速', '气象风速', '风向', '温度', '气压'};
disp('最重要的特征是:');
disp(topFeaturesNames(topFeatures));
xticklabels(topFeaturesNames);

 3.运行结果

        运行结果如下(以笔者的风力发电机数据集为例):

 4.完整代码

%% 清空环境变量
warning off % 关闭警告信息显示
close all % 关闭所有图形窗口
clear % 清除工作区变量
clc % 清空命令窗口
% 读取CSV文件
data = readtable('01.csv'); % 如果数据文件不包含表头,请使用readmatrix函数

% 将数据拆分为特征和目标变量
X = data{1:2000, 1:6}; % 假设前6列是特征
y = data{1:2000, 7};   % 假设最后一列是目标变量

ens = fitensemble(X, y, 'LSBoost', 100, 'Tree', 'Type', 'regression');

% 计算特征的重要性分数
featureImportance = predictorImportance(ens);
% 将特征的重要性得分归一化处理
normalizedFeatureImportance = featureImportance / sum(featureImportance);
disp(normalizedFeatureImportance);

% 可视化特征重要性
bar(normalizedFeatureImportance);
xlabel('特征');
ylabel('重要性得分');
title('特征重要性');

% 根据得分排序特征
[sortedImportance, sortedIdx] = sort(normalizedFeatureImportance, 'descend');
topFeatures = sortedIdx(1:4); % 选择最重要的四个特征

% 输出最重要的特征
topFeaturesNames = {'湿度', '真实风速', '气象风速', '风向', '温度', '气压'};
disp('最重要的特征是:');
disp(topFeaturesNames(topFeatures));
% 重新设置图表横坐标
xticklabels(topFeaturesNames);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1437474.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

07-使用Package、Crates、Modules管理项目

上一篇:06-枚举和模式匹配 当你编写大型程序时,组织代码将变得越来越重要。通过对相关功能进行分组并将具有不同功能的代码分开,您可以明确在哪里可以找到实现特定功能的代码,以及在哪里可以改变功能的工作方式。 到目前为止&…

人工智能|深度学习——基于全局注意力的改进YOLOv7-AC的水下场景目标检测系统

代码下载: 基于全局注意力的改进YOLOv7-AC的水下场景目标检测系统.zip资源-CSDN文库 1.研究的背景 水下场景目标检测是水下机器人、水下无人机和水下监控等领域中的重要任务之一。然而,由于水下环境的复杂性和特殊性,水下目标检测面临着许多挑…

有责无权的PM如何管好项目?

一、项目经理的责任和权力分析 项目经理作为项目的责任主体,承担着确保项目顺利完成的重要责任。他们需要确保项目达到预期目标,控制项目进度、成本和质量,并保证项目团队的有效运作。然而,与责任相对应的权力却并不总是与之匹配…

代码随想录算法训练营第四十五天(动态规划篇)|01背包

01背包理论基础 学习资料:代码随想录 (programmercarl.com) 相关链接:题目页面 (kamacoder.com) 背包题目分类 01背包定义 有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次…

#免费 苹果M系芯片Macbook电脑MacOS使用Bash脚本写入(读写)NTFS硬盘教程

Mac电脑苹果芯片读写NTFS硬盘bash脚本 (ntfs.sh脚本内容在本文最后面) ntfs.sh脚本可以将Mac系统(苹果M系芯片)上的NTFS硬盘改成可读写的挂载方式,从而可以直接往NTFS硬盘写入数据。此脚本免费,使用过程中无需下载任何收费软件。…

SpringBoo+Vue构建简洁日志文件查看系统

点击下载《SpringBooVue构建日志文件查看系统(源代码)》 1. 前言 想必经常做java开发的小伙伴,其大多数服务都是运行在linux系统上的,当遇到一些比较棘手的bug需要处理时,经常要上服务器去捞日志,然后通过…

网络空间内生安全数学基础(2)——编码信道数学模型

目录 (零)这篇博客在干什么(一)内生安全与香农信道编码定理(二)基本定义(三)编码信道存在定理(三.壹)编码信道存在第一定理(三.贰)编码…

Python程序员面试题精选(1)

本文精心挑选了10道Python程序员面试题,覆盖了Python的多个核心领域,包括装饰器、lambda函数、列表推导式、生成器、全局解释器锁(GIL)、单例模式以及上下文管理器等。每道题都附有简洁的代码示例,帮助读者更好地理解和应用相关知识点。 题目…

数据结构与算法之美学习笔记:50 | 索引:如何在海量数据中快速查找某个数据?

目录 前言为什么需要索引?索引的需求定义构建索引常用的数据结构有哪些?总结引申 前言 本节课程思维导图: 在第 48 节中,我们讲了 MySQL 数据库索引的实现原理。MySQL 底层依赖的是 B 树这种数据结构。留言里有同学问我&#xff…

《山雨欲来-知道创宇 2023 年度 APT 威胁分析总结报告》

下载链接: https://pan.baidu.com/s/1eaIOyTk12d9mcuqDGzMYYQ?pwdzdcy 提取码: zdcy

VSCode无法启动:Waiting for server log...

问题基本情况 [13:30:20.720] > code 1.86.0 (commit 05047486b6df5eb8d44b2ecd70ea3bdf775fd937) [13:30:20.724] > Running ssh connection command... /var/fpwork/reiss/vscdata/server/cplane/.vscode-server/code-05047486b6df5eb8d44b2ecd70ea3bdf775fd937 comman…

C++中的析构函数

一、析构函数概念 析构函数不是完成对象的销毁,对象的销毁是由编译器完成的。析构函数完成的是对象中资源的清理工作。通常是对对象中动态开辟的空间进行清理。 二、析构函数特性 1.析构函数的函数名是 ~类名 2.析构函数无参数无返回值 3.一个类中只能有一个析…

有趣的CSS - 旋转的太极图

目录 整体效果核心代码html 代码css 部分代码 完整代码如下html 页面css 样式页面渲染效果 整体效果 使用 :before 、:after 伪元素以及 animation 属性画一个顺时针旋转的太极图。 核心代码部分,简要说明了写法思路;完整代码在最后,可直接复…

python 函数式编程入门:Lambda 函数的魅力

python 函数式编程入门:Lambda 函数的魅力 介绍Lambda 函数的应用排序过滤映射map、filter、reduce数据转换和筛选 介绍 Lambda 函数是 Python 中一个强大的功能,它可以快速创建匿名函数。在函数式编程中,lambda 函数发挥着至关重要的作用。…

消息队列使用的四种场景介绍

一、简介 消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题。 实现高性能,高可用,可伸缩和最终一致性架构。 使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ…

java内部类概述及使用方法

前言: 打好基础,daydayup! 内部类 内部类概述: 内部类是类的五大成分之一(成员变量,方法,构造器,内部类,代码块),如果一个类定义在另一个类的内部&#xff…

『运维备忘录』之 Yum 命令详解

运维人员不仅要熟悉操作系统、服务器、网络等只是,甚至对于开发相关的也要有所了解。很多运维工作者可能一时半会记不住那么多命令、代码、方法、原理或者用法等等。这里我将结合自身工作,持续给大家更新运维工作所需要接触到的知识点,希望大…

什么是UI设计?

用户界面(UI)它是人与机器互动的载体,也是用户体验(UX)一个组成部分。用户界面由视觉设计 (即传达产品的外观和感觉) 和交互设计 (即元素的功能和逻辑组织) 两部分组成。用户界面设计的目标是创建一个用户界面&#xf…

新版本nginx安装提示需要openssl的问题

新版本的nginx安装的时候未发现openssl的路径,有两种方式解决 方式一: 找到本地nginx的解压目录中 ,例如我的放到root下面了。 进入 /root/nginx1.24.0/auto/lib/openssl/conf 目录下修改内容 ,这两行都需要修改,…

TCP 粘包/拆包

文章目录 概述粘包拆包发生场景解决TCP粘包和拆包问题的常见方法Netty对粘包和拆包问题的处理小结 概述 TCP的粘包和拆包问题往往出现在基于TCP协议的通讯中,比如RPC框架、Netty等 TCP 粘包/拆包 就是你基于 TCP 发送数据的时候,出现了多个字符串“粘”…