时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测

news2025/1/13 13:19:40

时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测

目录

    • 时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测(风电功率预测);
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,单变量时间序列数据,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、MAPE、MSE、RMSE、RPD多指标评价;

在这里插入图片描述

模型描述

CNN-GRU-AdaBoost是一种将CNN-GRU和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。CNN-GRU-AdaBoost算法的基本思想是将CNN-GRU作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个CNN-LSTM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

  • 完整源码和数据获取方式资源出下载MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测 。
% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
options0 = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 100, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.01, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod',70, ...                   % 训练100次后开始调整学习率
    'LearnRateDropFactor',0.01, ...                    % 学习率调整因子
    'L2Regularization', 0.001, ...         % 正则化参数
    'ExecutionEnvironment', 'cpu',...                 % 训练环境
    'Verbose', 1, ...                                 % 关闭优化过程
    'Plots', 'none');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1435452.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

微软为新闻编辑行业推出 AI 辅助项目,记者参加免费课程

2 月 6 日消息,微软当地时间 5 日发布新闻稿宣布与多家新闻机构展开多项基于生成式 AI 的合作。微软表示,其使命是确保新闻编辑室在今年和未来拥有创新。 目前建议企业通过微软官方合作伙伴获取服务,可以合规、稳定地提供企业用户使用ChatGP…

Leetcode02.05:链表求和

一、题目描述 给定两个用链表表示的整数,每个节点包含一个数位。 这些数位是反向存放的,也就是个位排在链表首部。 编写函数对这两个整数求和,并用链表形式返回结果。 示例: 输入:(7 -> 1 -> 6) (5 -> 9 -…

STM32内部Flash

目录 一、内部Flash简介 二、内部Flash构成 1. 主存储器 2. 系统存储区 3. 选项字节 三、内部Flash写入过程 1. 解锁 2. 页擦除 3. 写入数据 四、工程空间分布 某工程的ROM存储器分布映像: 1. 程序ROM的加载与执行空间 2. ROM空间分布表 一、内部Flash…

1、将 ChatGPT 集成到数据科学工作流程中:提示和最佳实践

将 ChatGPT 集成到数据科学工作流程中:提示和最佳实践 希望将 ChatGPT 集成到您的数据科学工作流程中吗?这是一个利用 ChatGPT 进行数据科学的提示的实践。 ChatGPT、其继任者 GPT-4 及其开源替代品非常成功。开发人员和数据科学家都希望提高工作效率,并使用 ChatGPT 来简…

Android14音频进阶:MediaPlayerService如何启动AudioTrack 上篇(五十五)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒体系统工程师系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只…

sql实现将某一列下移一行

问题 实现如下图所示的 max_salary 下移一行 方法:使用开窗函数 select max_salary, max(max_salary) over(order by max_salary asc rows between 1 PRECEDING and 1 PRECEDING) max_salary_plus from jobs

库存扣减如何避免超卖和少卖?

🎬作者简介:大家好,我是小徐🥇☁️博客首页:CSDN主页小徐的博客🌄每日一句:好学而不勤非真好学者 📜 欢迎大家关注! ❤️ 所谓”超卖"指的就是商品卖多了&#xff0…

N-143基于springboot博客系统

开发工具:IDEA 服务器:Tomcat9.0, jdk1.8 项目构建:maven 数据库:mysql5.7 前端技术:AdminLTEHTML 服务端技术:springbootmybatis-plusthymeleaf 本项目分前台和后台,主要有普…

幻兽帕鲁mac可以玩吗?

《幻兽帕鲁》(英文:Palworld)是一款近期在 Steam 爆红的动作冒险生存游戏,游戏设置在一个居住着「帕鲁」的开放世界中,玩家可以战斗并捕捉帕鲁,也能用它们来建造基地、骑乘和战斗。 不过目前《幻兽帕鲁》仅…

Django模板(一)

一、基本规则 作为一个Web框架,Django需要一种方便的方式来动态生成HTML。最常用的方法依赖于模板。模板包含所需HTML输出的静态部分以及描述如何插入动态内容的特殊语法 1.1、django默认模板 在settings中配置: TEMPLATES = [{BACKEND: django.template.backends.django.…

记一次页面接口502问题:“502 Bad Gateway”

接收别人的项目进行迭代,项目部署到服务器上之后,有一个接口数据刷不出来,一直502 后来联想到网关的问题,想通过设置白名单的方式解决,设置之后依旧不行。 查看nginx日志发现报错: *169 connect() failed …

Python学习路线 - Python高阶技巧 - PySpark案例实战

Python学习路线 - Python高阶技巧 - PySpark案例实战 前言介绍Spark是什么Python On SparkPySparkWhy PySpark 基础准备PySpark库的安装构建PySpark执行环境入口对象PySpark的编程模型 数据输入RDD对象Python数据容器转RDD对象读取文件转RDD对象 数据计算map方法flatMap方法red…

【django】建立python虚拟环境-20240205

1.确保已经安装pip3 install venv 2.新建虚拟环境 python -m venv myenv 3.安装虚拟环境的依赖包 pip install … 4.激活虚拟环境 cd myenv cd Scripts activate 激活activate.bat并进入虚拟环境 进入虚拟环境后,命令行前面显示(myenv&#xff0…

2024.2.4 awd总结

防御阶段 感觉打了几次awd,前面阶段还算比较熟练 1.ssh连接 靶机登录 修改密码 [root8 ~]# passwd Changing password for user root. New password: Retype new password: 2.xftp连接 备份网站源码 我觉得这步还是非常重要的,万一后面被删站。。…

vscode连接ssh报错

关于vscode更新版本至1.86后,导致无法连接服务器问题的记录 原因:vscode1.86更新了对glibc的要求,需要最低2.28版本,导致各种旧版本的linux发行版(比如最常见的centos 7)都无法用remote-ssh来连接了&#…

STM32F1 - 开发环境搭建

Editions 1> Keil2> 器件支持包 1> Keil 【🔗 MDK-Arm 官网链接】 2> 器件支持包 【🔗 器件支持包 - STM32F103】

R语言绘图教程 | 双侧条形图绘制教程

写在前面 双侧条形图在我们的文章中也是比较常见的,那么这样的图形是如何绘制的呢? 以及它使用的数据类型是什么呢? 这些都是我们在绘制图形前需要掌握的,至少我们知道绘图的数据集如何准备,这样才踏出第一步。 今天的教程,我们会从数据的准备,以及数据如何整理,以及…

基于OpenCV灰度图像转GCode的螺旋扫描实现

基于OpenCV灰度图像转GCode的螺旋扫描实现 引言激光雕刻简介OpenCV简介实现步骤 1.导入必要的库2. 读取灰度图像3. 图像预处理4. 生成GCode5. 保存生成的GCode6. 灰度图像螺旋扫描代码示例 总结 系列文章 ⭐深入理解G0和G1指令:C中的实现与激光雕刻应用⭐基于二值…

智慧树答案怎么查找? #知识分享#学习方法#学习方法

大学开学,就意味着又回到了被线性代数、大学物理等测验题折磨的状态了……网站无法手动输入题干公式,初高中用过的搜题软件又都搜不到,想找个答案解析仿佛在大海捞针!不过不用怕,今天小林就把从大学攒到毕业工作都在使…

ChatGPT高效提问—prompt基础

ChatGPT高效提问—prompt基础 ​ 设计一个好的prompt对于获取理想的生成结果至关重要。通过选择合适的关键词、提供明确的上下文、设置特定的约束条件,可以引导模型生成符合预期的回复。例如,在对话中,可以使用明确的问题或陈述引导模型生成…