【保姆级教程|YOLOv8改进】【5】精度与速度双提升,使用FasterNet替换主干网络

news2025/1/16 1:37:15

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

前言

论文发表时间:2023.03.07

github地址:https://github.com/JierunChen/FasterNet
paper地址:https://export.arxiv.org/pdf/2303.03667v1.pdf

在这里插入图片描述

文章提出了一种新颖的局部卷积(PConv),它通过削减冗余计算和内存访问,更高效地提取空间特征,而且在作者测试的数据集上实现了精度与速度的双重提升。本文详细介绍了如何在yolov8中使用FasterNet替换其主干网络,并且使用修改后的yolov8进行目标检测训练与推理本文提供了所有源码免费供小伙伴们学习参考,需要的可以通过文末方式自行下载。

本文改进使用的ultralytics版本为:ultralytics == 8.0.227

目录

  • 前言
  • 1.FasterNet简介
    • 1.1 网络结构
    • 1.2 性能对比
  • 2.YOLOv8替换主干步骤
    • YOLOv8网络结构前后对比
    • 定义FasterNet相关类
    • 修改指定文件
  • 3.加载配置文件并训练
  • 4.模型推理
  • 【源码免费获取】
  • 结束语

1.FasterNet简介

在这里插入图片描述

摘要:为了设计快速的神经网络,许多研究工作一直专注于减少浮点运算(FLOPs)的数量。然而,我们观察到,FLOPs的这种减少,并不一定导致相似水平的延迟降低。这主要是由于低效的每秒浮点运算数(FLOPS)造成的。为了实现更快的网络,我们重审了流行的运算符,并演示了这种低FLOPS主要是由于运算符的频繁内存访问,特别是深度卷积。因此,我们提出了一种新颖的局部卷积(PConv),它通过削减冗余计算和内存访问,更高效地提取空间特征。在我们的PConv上,我们进一步提出了FasterNet,一个新的神经网络家族,它在广泛的设备上实现了比其他网络更高的运行速度,同时在各种视觉任务上的精度不打折扣。例如,在ImageNet-1k上,我们的小型FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileViT-XXS快3.1倍、3.1倍和2.5倍,同时精度提高了2.9%。我们的大型FasterNet-L取得了令人印象深刻的83.5%的top-1精度,与新兴的Swin-B不相上下,同时在GPU上的推理吞吐量提高了49%,以及在CPU上节省了42%的计算时间。

论文主要亮点如下:

• 强调了为了实现更快的神经网络,提升每秒浮点运算数(FLOPS)的重要性,而不仅仅是减少FLOPs。
• 引入了一个简单但快速且有效的运算符,称为PConv,它具有很高的潜力来替代现有的首选选项,即深度卷积(DWConv)。
• 介绍了FasterNet,它在GPU、CPU和ARM处理器等各种设备上都能流畅且普遍地快速运行。
• 在各种任务上进行了广泛的实验,并验证了我们的PConv和FasterNet的高速度和有效性。

1.1 网络结构

在这里插入图片描述
在这里插入图片描述

1.2 性能对比

在这里插入图片描述
在这里插入图片描述

2.YOLOv8替换主干步骤

YOLOv8网络结构前后对比

在这里插入图片描述

定义FasterNet相关类

ultralytics/nn/modules/block.py中添加如下代码块,为FasterNet源码:
在这里插入图片描述
并在ultralytics/nn/modules/block.py中最上方添加如下代码:
在这里插入图片描述

修改指定文件

ultralytics/nn/modules/__init__.py文件中的添加如下代码:
在这里插入图片描述

ultralytics/nn/tasks.py 上方导入相应类名,并在parse_model解析函数中添加如下代码:
在这里插入图片描述

        elif m in [BasicStage]:
                args.pop(1)

在这里插入图片描述

ultralytics/nn/tasks.py 中搜索self.model.modules(),定位到如下代码,并且在下方添加如下方框中的代码内容:
在这里插入图片描述

ultralytics/cfg/models/v8文件夹下新建yolov8-FasterNet.yaml文件,内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, PatchEmbed_FasterNet, [40, 4, 4]]  # 0-P1/4
  - [-1, 1, BasicStage, [40, 1]]  # 1
  - [-1, 1, PatchMerging_FasterNet, [80, 2, 2]]  # 2-P2/8
  - [-1, 2, BasicStage, [80, 1]]  # 3-P3/16
  - [-1, 1, PatchMerging_FasterNet, [160, 2, 2]]  # 4
  - [-1, 8, BasicStage, [160, 1]]  # 5-P4/32
  - [-1, 1, PatchMerging_FasterNet, [320, 2, 2]] # 6
  - [-1, 2, BasicStage, [320, 1]] # 7
  - [-1, 1, SPPF, [320, 5]]  # 8


# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 5], 1, Concat, [1]]  # cat backbone P4
  - [-1, 1, C2f, [512]]  # 11

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 3], 1, Concat, [1]]  # cat backbone P3
  - [-1, 1, C2f, [256]]  # 14 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 11], 1, Concat, [1]]  # cat head P4
  - [-1, 1, C2f, [512]]  # 17 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 8], 1, Concat, [1]]  # cat head P5
  - [-1, 1, C2f, [1024]]  # 20 (P5/32-large)

  - [[14, 17, 20], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3.加载配置文件并训练

加载yolov8-BiLevelRoutingAttention.yaml配置文件,并运行train.py训练代码:

#coding:utf-8
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8-FasterNet.yaml')
    model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='datasets/TomatoData/data.yaml', epochs=30, batch=4)

注意观察,打印出的网络结构是否正常修改,如下图所示:
在这里插入图片描述

4.模型推理

模型训练完成后,我们使用训练好的模型对图片进行检测:

#coding:utf-8
from ultralytics import YOLO
import cv2

# 所需加载的模型目录
# path = 'models/best2.pt'
path = 'runs/detect/train/weights/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Riped tomato_8.jpeg"

# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')

# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

在这里插入图片描述

【源码免费获取】

为了小伙伴们能够,更好的学习实践,本文已将所有代码、示例数据集、论文等相关内容打包上传,供小伙伴们学习。获取方式如下:

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【yolov8改进】即可免费获取

在这里插入图片描述


结束语

关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1435151.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

为什么(如何)从 Java 8/11 迁移到 Java 21,从 Spring Boot 2 迁移到最新的 Spring Boot 3.2 ?

介绍 如果您的工作配置与 Java 有一定的关系,您一定已经注意到 了Java 最新稳定版本 Java 21 引起了很多关注。 这个新版本引入了一些未来的功能,改进了之前引入/孵化的一些突破性功能,弃用了多余的功能,并删除了一些错误。它使…

Halcon 缺陷检测

文章目录 开闭运算,腐蚀膨胀的亮点问题灰度图像的开闭运算,腐蚀膨胀的亮点问题算子二值化算子 Halcon blob特征处理的方法检测缺陷Halcon Blob特征差分的方法检测缺陷Halcon 极坐标变换(环形先转换坐标)blob特征Halcon Blob局部二…

PySpark(四)PySpark SQL、Catalyst优化器、Spark SQL的执行流程

目录 PySpark SQL 基础 SparkSession对象 DataFrame入门 DataFrame构建 DataFrame代码风格 DSL SQL SparkSQL Shuffle 分区数目 DataFrame数据写出 Spark UDF Catalyst优化器 Spark SQL的执行流程 PySpark SQL 基础 PySpark SQL与Hive的异同 Hive和Spark 均是:“分…

2月5日作业

1.请编程实现哈希表的创建存储数组(12,24,234,234,23,234,23),输入key查找的值&#xff0c;实现查找功能 #include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h> typedef int datatype; typedef struct node {datatype data;str…

JenkinsGitLab完成自动化构建部署

关于GitLab安装:GitLab安装-CSDN博客 Docker中安装GitLab:Docker下安装GitLab-CSDN博客 安装JenKins Jenkins官网:Jenkins 中文版:Jenkins 安装时候中文页面的war包下不来 在英文页面 记得装JDK8以上 JenKins使用java写的 运行JenKins需要JDK环境 我这里已经装好了 将下…

VXLAN:虚拟化网络的强大引擎

1.什么是VXLAN VXLAN&#xff08;Virtual eXtensible Local Area Network&#xff0c;虚拟扩展局域网&#xff09;&#xff0c;是由IETF定义的NVO3&#xff08;Network Virtualization over Layer 3&#xff09;标准技术之一&#xff0c;是对传统VLAN协议的一种扩展。VXLAN的特…

华为云GaussDB在新零售云转型上的摸索实验

新零售的“云化” 阿里研究院曾经提到过一个理念&#xff1a; 零售的本质是无时无刻不为消费者提供超出预期的“内容”。 这个理念其实不难理解&#xff0c;想要留住消费者&#xff0c;靠大家都能提供的“内容”显然是行不通的。超出预期&#xff0c;才能吸引消费者的“消费…

5-4、S加减单片机程序【51单片机+L298N步进电机系列教程】

↑↑↑点击上方【目录】&#xff0c;查看本系列全部文章 摘要&#xff1a;本节介绍实现步进电机S曲线运动的代码 一、目标功能 实现步进电机转动总角度720&#xff0c;其中加减速各90 加速段&#xff1a;加速类型&#xff1a;S曲线  加速角度&#xff1a;角度为90  起步速度…

Python:批量url链接保存为PDF

我的数据是先把url链接获取到存入excel中&#xff0c;后续对excel做的处理&#xff0c;各位也可以直接在程序中做处理&#xff0c;下面就是针对excel中的链接做批量处理 excel内容格式如下&#xff08;涉及具体数据做了隐藏&#xff09; 标题文件链接文件日期网页标题1http://…

标准库 STM32+EC11编码器+I2C ssd1306多级菜单例程

标准库 STM32EC11编码器I2C ssd1306多级菜单例程 &#x1f4cc;原创项目来源于&#xff1a;https://github.com/AdamLoong/Embedded_Menu_Simple&#x1f4cd;相关功能演示观看&#xff1a;https://space.bilibili.com/74495335 单片机多级菜单v1.2 &#x1f449;本次采用的是原…

对于模糊查询的SQL,怎么优先返回等值记录

说明&#xff1a;记录一次SQL改进的方法&#xff0c;希望能对大家有启发。 场景 前端项目有一个输入框&#xff0c;根据输入的银行名称&#xff0c;去模糊查询对应的数据库表&#xff0c;返回结果集&#xff0c;显示到下拉列表中。 因为银行名称字段包括了分行名&#xff0c…

【机器学习】机器学习简单入门

&#x1f388;个人主页&#xff1a;甜美的江 &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;matplotlib &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…

Linux基础-磁盘

1.磁盘分区 1.分区有固定大小 2.直接写在这块盘的磁盘分区表中&#xff08;DPT&#xff09;&#xff0c;和上面装什么操作系统没有任何关系 2.每一个磁盘分区都要先有一个磁盘分区类型 GPT&#xff08;首选&#xff09; MBR 3.磁盘专业术语叫做块设备&#xff08;Block Dev…

re:从0开始的CSS学习之路 2. 选择器超长大合集

0. 写在前面 虽然现在还是不到25的青年人&#xff0c;有时仍会感到恐慌&#xff0c;害怕不定的未来&#xff0c;后悔失去的时间&#xff0c;但细细想来&#xff0c;只有自己才知道&#xff0c;再来一次也不会有太多的改变。 CSS的选择器五花八门&#xff0c;而且以后在JavaScr…

【DDD】学习笔记-数据模型与对象模型

在建立数据设计模型时&#xff0c;我们需要注意表设计与类设计之间的差别&#xff0c;这事实上是数据模型与对象模型之间的差别。 数据模型与对象模型 我们首先来分析在设计时对冗余的考虑。前面在讲解数据分析模型时就提及&#xff0c;在确定数据项模型时&#xff0c;需要遵…

Go语言每日一练——链表篇(五)

传送门 牛客面试笔试必刷101题 ----------------合并k个已排序的链表 题目以及解析 题目 解题代码及解析 解析 这一道题与昨天的合并链表题目类似&#xff0c;但是由于有K个且时间复杂度要求控制在O(nlogn)&#xff0c;这里主要有两种解法&#xff1a;一种是依旧使用归并来…

7.0 Zookeeper 客户端基础命令使用

zookeeper 命令用于在 zookeeper 服务上执行操作。 首先执行命令&#xff0c;打开新的 session 会话&#xff0c;进入终端。 $ sh zkCli.sh 下面开始讲解基本常用命令使用&#xff0c;其中 acl 权限内容在后面章节详细阐述。 ls 命令 ls 命令用于查看某个路径下目录列表。…

函数的连续与间断【高数笔记】

【连续】 分类&#xff0c;分几个&#xff1f;每类特点&#xff1f; 连续条件&#xff0c;是同时满足还是只需其一&#xff1f; 【间断】 分类&#xff0c;分几个大类&#xff0c;又分几个小类&#xff1f;每类特点&#xff1f; 间断条件&#xff0c;是同时满足还是只需其一&am…

PAT-Apat甲级题1008(python和c++实现)

PTA | 1008 Elevator 1008 Elevator 作者 CHEN, Yue 单位 浙江大学 The highest building in our city has only one elevator. A request list is made up with N positive numbers. The numbers denote at which floors the elevator will stop, in specified order. It …

【C/C++ 17】继承

目录 一、继承的概念 二、基类和派生类对象赋值转换 三、继承的作用域 四、派生类的默认成员函数 五、继承与友元 六、继承与静态成员变量 七、菱形继承与虚拟继承 一、继承的概念 继承是指一个类可以通过继承获得另一个类的属性和方法&#xff0c;扩展自己的功能&…