目录
- 2.9 堆
- 建堆
- 习题
- E01. 堆排序
- E02. 数组中第K大元素-Leetcode 215
- E03. 数据流中第K大元素-Leetcode 703
- E04. 数据流的中位数-Leetcode 295
2.9 堆
以大顶堆为例,相对于之前的优先级队列,增加了堆化等方法
public class MaxHeap {
int[] array;
int size;
public MaxHeap(int capacity) {
this.array = new int[capacity];
}
/**
* 获取堆顶元素
*
* @return 堆顶元素
*/
public int peek() {
return array[0];
}
/**
* 删除堆顶元素
*
* @return 堆顶元素
*/
public int poll() {
int top = array[0];
swap(0, size - 1);
size--;
down(0);
return top;
}
/**
* 删除指定索引处元素
*
* @param index 索引
* @return 被删除元素
*/
public int poll(int index) {
int deleted = array[index];
up(Integer.MAX_VALUE, index);
poll();
return deleted;
}
/**
* 替换堆顶元素
*
* @param replaced 新元素
*/
public void replace(int replaced) {
array[0] = replaced;
down(0);
}
/**
* 堆的尾部添加元素
*
* @param offered 新元素
* @return 是否添加成功
*/
public boolean offer(int offered) {
if (size == array.length) {
return false;
}
up(offered, size);
size++;
return true;
}
// 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶
private void up(int offered, int index) {
int child = index;
while (child > 0) {
int parent = (child - 1) / 2;
if (offered > array[parent]) {
array[child] = array[parent];
} else {
break;
}
child = parent;
}
array[child] = offered;
}
public MaxHeap(int[] array) {
this.array = array;
this.size = array.length;
heapify();
}
// 建堆
private void heapify() {
// 如何找到最后这个非叶子节点 size / 2 - 1
for (int i = size / 2 - 1; i >= 0; i--) {
down(i);
}
}
// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大
private void down(int parent) {
int left = parent * 2 + 1;
int right = left + 1;
int max = parent;
if (left < size && array[left] > array[max]) {
max = left;
}
if (right < size && array[right] > array[max]) {
max = right;
}
if (max != parent) { // 找到了更大的孩子
swap(max, parent);
down(max);
}
}
// 交换两个索引处的元素
private void swap(int i, int j) {
int t = array[i];
array[i] = array[j];
array[j] = t;
}
public static void main(String[] args) {
int[] array = {2, 3, 1, 7, 6, 4, 5};
MaxHeap heap = new MaxHeap(array);
System.out.println(Arrays.toString(heap.array));
while (heap.size > 1) {
heap.swap(0, heap.size - 1);
heap.size--;
heap.down(0);
}
System.out.println(Arrays.toString(heap.array));
}
}
建堆
Floyd 建堆算法作者(也是之前龟兔赛跑判环作者):
- 找到最后一个非叶子节点
- 从后向前,对每个节点执行下潜
一些规律
- 一棵满二叉树节点个数为 2 h − 1 2^h-1 2h−1,如下例中高度 h = 3 h=3 h=3 节点数是 2 3 − 1 = 7 2^3-1=7 23−1=7
- 非叶子节点范围为 [ 0 , s i z e / 2 − 1 ] [0, size/2-1] [0,size/2−1]
算法时间复杂度分析
下面看交换次数的推导:设节点高度为 3
本层节点数 | 高度 | 下潜最多交换次数(高度-1) | |
---|---|---|---|
4567 这层 | 4 | 1 | 0 |
23这层 | 2 | 2 | 1 |
1这层 | 1 | 3 | 2 |
每一层的交换次数为:
节点个数
∗
此节点交换次数
节点个数*此节点交换次数
节点个数∗此节点交换次数,总的交换次数为
$$
\begin{aligned}
& 4 * 0 + 2 * 1 + 1 * 2 \
& \frac{8}{2}*0 + \frac{8}{4}*1 + \frac{8}{8}*2 \
& \frac{8}{2^1}*0 + \frac{8}{2^2}*1 + \frac{8}{2^3}*2\
\end{aligned}
即
即
即
\sum_{i=1}{h}(\frac{2h}{2^i}*(i-1))
$$
在 https://www.wolframalpha.com/ 输入
Sum[\(40)Divide[Power[2,x],Power[2,i]]*\(40)i-1\(41)\(41),{i,1,x}]
推导出
2
h
−
h
−
1
2^h -h -1
2h−h−1
其中
2
h
≈
n
2^h \approx n
2h≈n,
h
≈
log
2
n
h \approx \log_2{n}
h≈log2n,因此有时间复杂度
O
(
n
)
O(n)
O(n)
习题
E01. 堆排序
算法描述
- heapify 建立大顶堆
- 将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆
- 重复第二步直至堆里剩一个元素
可以使用之前课堂例题的大顶堆来实现
int[] array = {1, 2, 3, 4, 5, 6, 7};
MaxHeap maxHeap = new MaxHeap(array);
System.out.println(Arrays.toString(maxHeap.array));
while (maxHeap.size > 1) {
maxHeap.swap(0, maxHeap.size - 1);
maxHeap.size--;
maxHeap.down(0);
}
System.out.println(Arrays.toString(maxHeap.array));
E02. 数组中第K大元素-Leetcode 215
小顶堆(可删去用不到代码)
class MinHeap {
int[] array;
int size;
public MinHeap(int capacity) {
array = new int[capacity];
}
private void heapify() {
for (int i = (size >> 1) - 1; i >= 0; i--) {
down(i);
}
}
public int poll() {
swap(0, size - 1);
size--;
down(0);
return array[size];
}
public int poll(int index) {
swap(index, size - 1);
size--;
down(index);
return array[size];
}
public int peek() {
return array[0];
}
public boolean offer(int offered) {
if (size == array.length) {
return false;
}
up(offered);
size++;
return true;
}
public void replace(int replaced) {
array[0] = replaced;
down(0);
}
private void up(int offered) {
int child = size;
while (child > 0) {
int parent = (child - 1) >> 1;
if (offered < array[parent]) {
array[child] = array[parent];
} else {
break;
}
child = parent;
}
array[child] = offered;
}
private void down(int parent) {
int left = (parent << 1) + 1;
int right = left + 1;
int min = parent;
if (left < size && array[left] < array[min]) {
min = left;
}
if (right < size && array[right] < array[min]) {
min = right;
}
if (min != parent) {
swap(min, parent);
down(min);
}
}
// 交换两个索引处的元素
private void swap(int i, int j) {
int t = array[i];
array[i] = array[j];
array[j] = t;
}
}
题解
public int findKthLargest(int[] numbers, int k) {
MinHeap heap = new MinHeap(k);
for (int i = 0; i < k; i++) {
heap.offer(numbers[i]);
}
for (int i = k; i < numbers.length; i++) {
if(numbers[i] > heap.peek()){
heap.replace(numbers[i]);
}
}
return heap.peek();
}
求数组中的第 K 大元素,使用堆并不是最佳选择,可以采用快速选择算法
E03. 数据流中第K大元素-Leetcode 703
上题的小顶堆加一个方法
class MinHeap {
// ...
public boolean isFull() {
return size == array.length;
}
}
题解
class KthLargest {
private MinHeap heap;
public KthLargest(int k, int[] nums) {
heap = new MinHeap(k);
for(int i = 0; i < nums.length; i++) {
add(nums[i]);
}
}
public int add(int val) {
if(!heap.isFull()){
heap.offer(val);
} else if(val > heap.peek()){
heap.replace(val);
}
return heap.peek();
}
}
求数据流中的第 K 大元素,使用堆最合适不过
E04. 数据流的中位数-Leetcode 295
可以扩容的 heap, max 用于指定是大顶堆还是小顶堆
public class Heap {
int[] array;
int size;
boolean max;
public int size() {
return size;
}
public Heap(int capacity, boolean max) {
this.array = new int[capacity];
this.max = max;
}
/**
* 获取堆顶元素
*
* @return 堆顶元素
*/
public int peek() {
return array[0];
}
/**
* 删除堆顶元素
*
* @return 堆顶元素
*/
public int poll() {
int top = array[0];
swap(0, size - 1);
size--;
down(0);
return top;
}
/**
* 删除指定索引处元素
*
* @param index 索引
* @return 被删除元素
*/
public int poll(int index) {
int deleted = array[index];
swap(index, size - 1);
size--;
down(index);
return deleted;
}
/**
* 替换堆顶元素
*
* @param replaced 新元素
*/
public void replace(int replaced) {
array[0] = replaced;
down(0);
}
/**
* 堆的尾部添加元素
*
* @param offered 新元素
*/
public void offer(int offered) {
if (size == array.length) {
grow();
}
up(offered);
size++;
}
private void grow() {
int capacity = size + (size >> 1);
int[] newArray = new int[capacity];
System.arraycopy(array, 0,
newArray, 0, size);
array = newArray;
}
// 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶
private void up(int offered) {
int child = size;
while (child > 0) {
int parent = (child - 1) / 2;
boolean cmp = max ? offered > array[parent] : offered < array[parent];
if (cmp) {
array[child] = array[parent];
} else {
break;
}
child = parent;
}
array[child] = offered;
}
public Heap(int[] array, boolean max) {
this.array = array;
this.size = array.length;
this.max = max;
heapify();
}
// 建堆
private void heapify() {
// 如何找到最后这个非叶子节点 size / 2 - 1
for (int i = size / 2 - 1; i >= 0; i--) {
down(i);
}
}
// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大
private void down(int parent) {
int left = parent * 2 + 1;
int right = left + 1;
int min = parent;
if (left < size && (max ? array[left] > array[min] : array[left] < array[min])) {
min = left;
}
if (right < size && (max ? array[right] > array[min] : array[right] < array[min])) {
min = right;
}
if (min != parent) { // 找到了更大的孩子
swap(min, parent);
down(min);
}
}
// 交换两个索引处的元素
private void swap(int i, int j) {
int t = array[i];
array[i] = array[j];
array[j] = t;
}
}
题解
private Heap left = new Heap(10, false);
private Heap right = new Heap(10, true);
/**
为了保证两边数据量的平衡
<ul>
<li>两边数据一样时,加入左边</li>
<li>两边数据不一样时,加入右边</li>
</ul>
但是, 随便一个数能直接加入吗?
<ul>
<li>加入左边前, 应该挑右边最小的加入</li>
<li>加入右边前, 应该挑左边最大的加入</li>
</ul>
*/
public void addNum(int num) {
if (left.size() == right.size()) {
right.offer(num);
left.offer(right.poll());
} else {
left.offer(num);
right.offer(left.poll());
}
}
/**
* <ul>
* <li>两边数据一致, 左右各取堆顶元素求平均</li>
* <li>左边多一个, 取左边元素</li>
* </ul>
*/
public double findMedian() {
if (left.size() == right.size()) {
return (left.peek() + right.peek()) / 2.0;
} else {
return left.peek();
}
}
本题还可以使用平衡二叉搜索树求解,不过代码比两个堆复杂