AI助力农作物自动采摘,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统

news2024/11/26 21:37:44

去年十一那会无意间刷到一个视频展示的就是德国机械收割机非常高效自动化地24小时不间断地在超广阔的土地上采摘各种作物,专家设计出来了很多用于采摘不同农作物的大型机械,看着非常震撼,但是我们国内农业的发展还是相对比较滞后的,小的时候拔草是一个人一列蹲在地里就在那埋头拔草,不知道什么时候才能走到地的尽头,小块的分散的土地太多基本上都是只能人工手工来取收割,大点的连片的土地可以用收割机来收割,不过收割机基本都是用来收割小麦的,最近几年好像老家也能看到用于收割玉米的机器了不过相对还是比较少的,玉米的收割我们基本上还是人工来收割的,不仅累效率还低遇上对玉米叶片过敏的就更要命了。。。。闲话就扯到这里了。

有时候经常在想我们的农业机械化自动化什么时候能再向前迈进一大步,回顾德国的工业机械,在视频展示的效果中,其实很关键的主要是两部分,一部分是机器视觉定位检测识别,另一部分是机械臂传动轴,两部分相互配合才能完成采摘工作,本文的主要想法是想要基于YOLOv5开发构建用于番茄采摘场景下的目标检测系统,前文实践如下:

《AI助力农作物自动采摘,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

首先看下实例效果:

简单看下实例数据情况:

本文是选择的是YOLOv5算法模型来完成本文项目的开发构建。相较于前两代的算法模型,YOLOv5可谓是集大成者,达到了SOTA的水平,下面简单对v3-v5系列模型的演变进行简单介绍总结方便对比分析学习:
【YOLOv3】
YOLOv3(You Only Look Once version 3)是一种基于深度学习的快速目标检测算法,由Joseph Redmon等人于2018年提出。它的核心技术原理和亮点如下:
技术原理:
YOLOv3采用单个神经网络模型来完成目标检测任务。与传统的目标检测方法不同,YOLOv3将目标检测问题转化为一个回归问题,通过卷积神经网络输出图像中存在的目标的边界框坐标和类别概率。
YOLOv3使用Darknet-53作为骨干网络,用来提取图像特征。检测头(detection head)负责将提取的特征映射到目标边界框和类别预测。
亮点:
YOLOv3在保持较高的检测精度的同时,能够实现非常快的检测速度。相较于一些基于候选区域的目标检测算法(如Faster R-CNN、SSD等),YOLOv3具有更高的实时性能。
YOLOv3对小目标和密集目标的检测效果较好,同时在大目标的检测精度上也有不错的表现。
YOLOv3具有较好的通用性和适应性,适用于各种目标检测任务,包括车辆检测、行人检测等。
【YOLOv4】
YOLOv4是一种实时目标检测模型,它在速度和准确度上都有显著的提高。相比于其前一代模型YOLOv3,YOLOv4在保持较高的检测精度的同时,还提高了检测速度。这主要得益于其采用的CSPDarknet53网络结构,主要有三个方面的优点:增强CNN的学习能力,使得在轻量化的同时保持准确性;降低计算瓶颈;降低内存成本。YOLOv4的目标检测策略采用的是“分而治之”的策略,将一张图片平均分成7×7个网格,每个网格分别负责预测中心点落在该网格内的目标。这种方法不需要额外再设计一个区域提议网络(RPN),从而减少了训练的负担。然而,尽管YOLOv4在许多方面都表现出色,但它仍然存在一些不足。例如,小目标检测效果较差。此外,当需要在资源受限的设备上部署像YOLOv4这样的大模型时,模型压缩是研究人员重新调整较大模型所需资源消耗的有用工具。
优点:
速度:YOLOv4 保持了 YOLO 算法一贯的实时性,能够在检测速度和精度之间实现良好的平衡。
精度:YOLOv4 采用了 CSPDarknet 和 PANet 两种先进的技术,提高了检测精度,特别是在检测小型物体方面有显著提升。
通用性:YOLOv4 适用于多种任务,如行人检测、车辆检测、人脸检测等,具有较高的通用性。
模块化设计:YOLOv4 中的组件可以方便地更换和扩展,便于进一步优化和适应不同场景。
缺点:
内存占用:YOLOv4 模型参数较多,因此需要较大的内存来存储和运行模型,这对于部分硬件设备来说可能是一个限制因素。
训练成本:YOLOv4 模型需要大量的训练数据和计算资源才能达到理想的性能,这可能导致训练成本较高。
精确度与速度的权衡:虽然 YOLOv4 在速度和精度之间取得了较好的平衡,但在极端情况下,例如检测高速移动的物体或复杂背景下的物体时,性能可能会受到影响。
误检和漏检:由于 YOLOv4 采用单一网络对整个图像进行预测,可能会导致一些误检和漏检现象。

【YOLOv5】
YOLOv5是一种快速、准确的目标检测模型,由Glen Darby于2020年提出。相较于前两代模型,YOLOv5集成了众多的tricks达到了性能的SOTA:
技术原理:
YOLOv5同样采用单个神经网络模型来完成目标检测任务,但采用了新的神经网络架构,融合了领先的轻量级模型设计理念。YOLOv5使用较小的骨干网络和新的检测头设计,以实现更快的推断速度,并在不降低精度的前提下提高目标检测的准确性。
亮点:
YOLOv5在模型结构上进行了改进,引入了更先进的轻量级网络架构,因此在速度和精度上都有所提升。
YOLOv5支持更灵活的模型大小和预训练选项,可以根据任务需求选择不同大小的模型,同时提供丰富的数据增强扩展、模型集成等方法来提高检测精度。YOLOv5通过使用更简洁的代码实现,提高了模型的易用性和可扩展性。

训练数据配置文件如下:

# Dataset
path: ./dataset
train:
  - images/train
val:
  - images/test
test:
  - images/test

# Classes
names:
  0: tomato

实验截止目前,本文将YOLOv5系列五款不同参数量级的模型均进行了开发评测,接下来看下模型详情:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5
 
# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  s: [0.33, 0.50, 1024]
  m: [0.67, 0.75, 1024]
  l: [1.00, 1.00, 1024]
  x: [1.33, 1.25, 1024]
 
# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]
 
# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13
 
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
 
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
 
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
 
   [[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)
  ]

在实验训练开发阶段,所有的模型均保持完全相同的参数设置,等待训练完成后,来整体进行评测对比分析。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能.F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【loss曲线】

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

从整体实验结果对比来看:n系列的模型效果最差,但是没有被其他几款模型拉开明显的差距,s系列的模型次之,m、l和x系列的模型性能相近,考虑到计算量的问题,这里我们最终选择使用m系列的模型来作为最终的推理模型。

接下来就以m系列的模型为基准,详细看下结果详情:

【Batch实例】

【数据分布可视化】

【PR曲线】

【训练可视化】

【混淆矩阵】

感兴趣的话也都可以自行尝试下。

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv5s

全系列五个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1433250.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

BUUCTF-Real-[PHPMYADMIN]CVE-2018-12613

目录 漏洞背景介绍 漏洞产生 漏洞利用 漏洞验证 漏洞背景介绍 phpMyAdmin 是一个以PHP为基础,以Web-Base方式架构在网站主机上的MySQL的数据库管理工具,让管理者可用Web接口管理MySQL数据库。借由此Web接口可以成为一个简易方式输入繁杂SQL语法的较佳…

GPT如何在一分钟内完成论文数据分析?

数据上传 PPMAN-AI 01 由于技术限制,目前InfinitePaper AI仅支持上传1份文件,且大小不超过10M。但是,在强大的代码解释器面前,这都是小问题。我们只需要将可能用到的文件打包成压缩文件上传即可,之后要求GPT直接解压…

计算机设计大赛 深度学习 机器视觉 车位识别车道线检测 - python opencv

0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习 机器视觉 车位识别车道线检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) …

财务数据处理问题及解决方案分享

一、平台介绍 财务自营计费主要承接京东自营数据在整个供应链中由C端转B端的功能实现,在整个供应链中属于靠后的阶段了,系统主要功能是计费和向B端的汇总。 二、问题描述 近年来自营计费数据量大增,有百亿的数据量,一天中汇总占…

Docker进阶篇-compose容器编排

一、描述 Docker-Compose是Docker官方的开源项目,负责实现对Docker容器集群的快速编排。 Compose是Docker公司推出的一个工具软件,可以管理多个Docker容器组成一个应用。需要定义 一个YAML格式的配置文件docker-compose.yml,配置好多个容器…

Stable Diffusion 模型下载:国风3 GuoFeng3

文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八案例九案例十推荐提示词下载地址模型介绍 欢迎使用GuoFeng3模型 - 这是一个中国华丽古风风格模型,也可以说是一个古风游戏角色模型,具有2.5D的质感。 条目内

【UE Niagara】环绕在人物周围的闪电效果

效果 步骤 1. 首先下载一个螺旋形状的静态网格体并导入UE(地址:https://pan.baidu.com/s/1l9Bn5lQd7tDBu3CMs4c2aA?pwd7myr ) 2. 创建一个Niagara系统 使用Empty模板 这里命名为“NS_LightingAround” 打开“NS_LightingAround”&#xff0…

Matplotlib绘制炫酷柱状图的艺术与技巧【第60篇—python:Matplotlib绘制柱状图】

文章目录 Matplotlib绘制炫酷柱状图的艺术与技巧1. 簇状柱状图2. 堆积柱状图3. 横向柱状图4. 百分比柱状图5. 3D柱状图6. 堆积横向柱状图7. 多系列百分比柱状图8. 3D堆积柱状图9. 带有误差线的柱状图10. 分组百分比柱状图11. 水平堆积柱状图12. 多面板柱状图13. 自定义颜色和样…

STC系列单片机的中断系统

目录 一、中断系统的定义 二、STC15系列单片机的中断请求源及结构图 三、中断查询表以及触发方式 四、在keil c中如何声明中断函数 五、外部中断 六、基于STC15芯片实战中断系统的使用 (1)外部中断2/外部中断3来检测门的开关状态 (2&a…

Centos 内存和硬盘占用情况以及top作用

目录 只查看内存使用情况: 内存使用排序取前5个: 硬盘占用情况 定位占用空间最大目录 top查看cpu及内存使用信息 前言-与正文无关 生活远不止眼前的苦劳与奔波,它还充满了无数值得我们去体验和珍惜的美好事物。在这个快节奏的世界中&…

RK3399平台开发系列讲解(内存篇)进程内存详解

🚀返回专栏总目录 文章目录 一、虚拟地址映射的物理内存1.1、物理内存1.2、虚拟内存1.2.1、用户态:低特权运行程序1.2.2、内核态:运行的程序需要访问操作系统内核数据二、PageCache三、指标查询命令沉淀、分享、成长,让自己和他人都能有所收获!😄 📢进程消耗的内存包…

车载充电器(OBC)氮化镓(GaN)驱动(高压高功率)设计(第四篇)

上图来自于网络 1、GaN FET概念 GaN FET,全称为Gallium Nitride Field-Effect Transistor(氮化镓场效应晶体管),是一种采用氮化镓(Gallium Nitride, GaN)材料制作的新型功率半导体器件。相较于传统的硅基…

『运维备忘录』之 Cron 命令详解

运维人员不仅要熟悉操作系统、服务器、网络等只是,甚至对于开发相关的也要有所了解。很多运维工作者可能一时半会记不住那么多命令、代码、方法、原理或者用法等等。这里我将结合自身工作,持续给大家更新运维工作所需要接触到的知识点,希望大…

Vue学习笔记之组件基础

1、组件的定义 一般将 Vue 组件定义在一个单独的 .vue 文件中,称做单文件组件;当然也可以将组件直接定义在js文件中,如下js代码,定义一个组件BlogPost,通过props定义对外暴露属性title,父组件传递title&am…

MySQL 小技巧:xtrabackup 软件包的下载及安装

案例:xtrabackup 软件包的下载及安装 软件包下载:Index of /percona/centos/7/RPMS/x86_64/ CentOS7 默认的数据库版本比较老,因此建议使用 xtrabackup 2.4 版本 // CentOS7 默认的数据库版本比较老,因此建议使用 xtrabackup 2.4 版本 // 安装 CentOS7 默…

【算法与数据结构】647、516、LeetCode回文子串+最长回文子序列

文章目录 一、647、回文子串二、516、最长回文子序列三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、647、回文子串 思路分析:判断一个字符串是否为回文串那么必须确定回文串的所在区间,而一维…

安卓平台valgrind交叉编译

背景 通过上次的文章valgrind跨平台调试及其问题分析,为同事们在大部分平台下进行内存问题分析提供了帮助。但是也遇到了阻塞情况:android 平台,无法交叉编译通过。大家对于编译这件事,似乎天然有一种排斥,本能的拒绝&#xff0c…

全网最详细解法|同济大学|高等数学|第八版|习题1-2

文章目录 同济大学|高等数学|第八版|习题1-2|2.1同济大学|高等数学|第八版|习题1-2|2.2同济大学|高等数学|第八版|习题1-2|2.3同济大学…

[Android] 240204批量生成联系人,短信,通话记录的APK

平常在做测试的时候,需要批量生成很多测试数据; 陌生人 联系人名字的生成支持随机生成,也可以自定义生成,自定义生成陌生人的数据,联系人的名字是否带索引; 通话记录 随机生成通话记录,在生…

Cannot resolve plugin org.apache.maven.plugins:maven-compiler-plugin:3.8.1

目录 【问题描述】maven环境报错 Cannot resolve plugin org.apache.maven.plugins:maven-compiler-plugin:3.8.1 【解决办法】 检查maven路径是否一致 路径一致的话&#xff0c;更改配置文件settings.xml的镜像源。 添加代码到 <mirrors> <!-- 阿里镜像 --> &l…