Linux 驱动开发基础知识——内核对设备树的处理与使用(十)

news2024/11/30 2:40:46

 个人名片:

🦁作者简介:学生
🐯个人主页:妄北y

🐧个人QQ:2061314755

🐻个人邮箱:2061314755@qq.com
🦉个人WeChat:Vir2021GKBS
🐼本文由妄北y原创,首发CSDN🎊🎊🎊
🐨座右铭:大多数人想要改造这个世界,但却罕有人想改造自己。

专栏导航:

妄北y系列专栏导航:

C/C++的基础算法:C/C++是一种常用的编程语言,可以用于实现各种算法,这里我们对一些基础算法进行了详细的介绍与分享。🎇🎇🎇

QT基础入门学习:对QT的基础图形化页面设计进行了一个简单的学习与认识,利用QT的基础知识进行了翻金币小游戏的制作🤹🤹🤹

Linux基础编程:初步认识什么是Linux,为什么学Linux,安装环境,进行基础命令的学习,入门级的shell编程。🍻🍻🍻

Linux应用开发基础开发:分享Linux的基本概念、命令行操作、文件系统、用户和权限管理等,网络编程相关知识,TCP/IP 协议、套接字(Socket)编程等,可以实现网络通信功能。💐💐💐

Linux项目开发:Linux基础知识的实践,做项目是最锻炼能力的一个学习方法,这里我们会学习到一些简单基础的项目开发与应用,而且都是毕业设计级别的哦。🤸🤸🤸


非常期待和您一起在这个小小的互联网世界里共同探索、学习和成长。💝💝💝 ✨✨ 欢迎订阅本专栏 ✨✨ 

文章介绍:

🎉本篇文章对Linux驱动基础学习的相关知识进行分享!🥳🥳🥳

上一章我们已经学习了设备树的语法,已经知道如何编译一个设备树,设备树是给内核给驱动使用的。内核和驱动程序该如何使用设备树呢?这一章我们进行一个详细的介绍。

如果您觉得文章不错,期待你的一键三连哦,你的鼓励是我创作动力的源泉,让我们一起加油,一起奔跑,让我们顶峰相见!!!💪💪💪

🎁感谢大家点赞👍收藏⭐评论✍️

目录:

一、内核对设备树的处理

1.1 dtb 中每一个节点都被转换为 device_node 结构体

1.2 哪些设备树节点会被转换为 platform_device

1.3 怎么转换为 platform_device 

1.4 platform_device 如何与 platform_driver 配对

​编辑1.4.1 最先比较:是否强制选择某个 driver 

1.4.2 然后比较:设备树信息

 1.4.3  接下来比较:platform_device_id

1.4.4 最后比较

二、内核里操作设备树的常用函数 

2.1 内核中设备树相关的头文件介绍

2.1.1 处理 DTB

2.1.2 处理 device_node 

 2.1.3 处理 platform_device

2.2 platform_device 相关的函数

2.2.1 of_find_device_by_node

2.2.2 platform_get_resource

2.3 有些节点不会生成 platform_device,怎么访问它们

2.3.1  找到节点

2.3.2 找到属性

2.3.3 获取属性的值

三、怎么修改设备树文件 

3.1 使用芯片厂家提供的工具

3.2 看绑定文档

3.3 参考同类型单板的设备树文件

3.4 网上搜索

3.5 自己研究驱动源码


一、内核对设备树的处理

        从源代码文件 dts 文件开始,设备树的处理过程为:

        dts 在 PC 机上被编译为 dtb 文件;

        u-boot dtb 文件传给内核;

        内核解析 dtb 文件,把每一个节点都转换为 device_node 结构体

        对于某些 device_node 结构体,会被转换为 platform_device 结构体

1.1 dtb 中每一个节点都被转换为 device_node 结构体

        根节点被保存在全局变量 of_root 中,从 of_root 开始可以访问到任意节点。

1.2 哪些设备树节点会被转换为 platform_device

(1)根节点下含有 compatile 属性的子节点

(2)含有特定 compatile 属性的节点的子节点

        如果一个节点的 compatile 属性,它的值是这 4 者之一:"simple-bus","simple-mfd","isa","arm,amba-bus", 那么它的子结点 ( 需含 compatile 属性)也可以转换为 platform_device

(3)总线 I2C、SPI 节点下的子节点:不转换为 platform_device。

        某个总线下到子节点,应该交给对应的总线驱动程序来处理, 它们不应该被 转换为 platform_device。

        比如以下的节点中:

/{
     mytest {
     compatile = "mytest", "simple-bus";
     mytest@0 {
        compatile = "mytest_0";
     };
 };
 
 i2c {
     compatile = "samsung,i2c";
     at24c02 {
    compatile = "at24c02"; 
     };
 };

 spi {
     compatile = "samsung,spi"; 
     flash@0 {
             compatible = "winbond,w25q32dw";
             spi-max-frequency = <25000000>;
             reg = <0>;
         };
     };
 };

 

/mytest 会被转换为 platform_device, 因为它兼容"simple-bus"; 它的子节点/mytest/mytest@0 也会被转换为 platform_device

/i2c 节点一般表示 i2c 控制器, 它会被转换为 platform_device, 在内核中有对应的 platform_driver;

/i2c/at24c02 节点不会被转换为 platform_device, 它被如何处理完全由父节点的 platform_driver 决定, 一般是被创建为一个 i2c_client

/spi节点, 它一般也是用来表示 SPI 控制器, 它会被转换为 platform_device, 在内核中有对应的 platform_driver;

/spi/flash@0 节点不会被转换为 platform_device, 它被如何处理完全由父节点的 platform_driver 决定, 一般是被创建为一个 spi_device。 

1.3 怎么转换为 platform_device 

        内核处理设备树的函数调用过程,这里不去分析;我们只需要得到如下结论:

               ◼ platform_device 中含有 resource 数组, 它来自 device_node reg, interrupts 属性;                ◼ platform_device.dev.of_node 指向 device_node, 可以通过它获得其他属性

1.4 platform_device 如何与 platform_driver 配对

        从设备树转换得来的 platform_device 会被注册进内核里,以后当我们每注册一个 platform_driver 时,它们就会两两确定能否配对,如果能配对成功 就调用 platform_driverprobe 函数

1.4.1 最先比较:是否强制选择某个 driver 

        ⚫ 比较:platform_device.driver_override platform_driver.driver.name

        可以设置 platform_device driver_override,强制选择某个 platform_driver

1.4.2 然后比较:设备树信息

        ⚫ 比较: platform_device.dev.of_node platform_driver.driver.of_match_table

        由设备树节点转换得来的 platform_device 中,含有一个结构体:of_node

它的类型如下:

        如果一个 platform_driver 支持设备树 , 它的platform_driver.driver.of_match_table 是一个数组

它的类型如下:

使用设备树信息来判断 dev 和 drv 是否配对时:

首先,如果 of_match_table 中含有 compatible 值,就跟 dev compatile 属性比较,若一致则成功,否则返回失败;

其次,如果 of_match_table 中含有 type 值,就跟 dev device_type 属性 比较,若一致则成功,否则返回失败;

最后,如果 of_match_table 中含有 name 值,就跟 dev name 属性比 较,若一致则成功,否则返回失败。

而设备树中建议不再使用 devcie_type name 属性,所以基本上只使用设备节点的 compatible 属性来寻找匹配的 platform_driver

 1.4.3  接下来比较:platform_device_id

      比较 platform_device. name platform_driver.id_table[i].name id_table 中可能有多项。

     platform_driver.id_table“platform_device_id”指针,表示该 drv 支持若干个 device,它里面列出了各个 device{.name, .driver_data}, 其中的“name”表示该 drv 支持的设备的名字driver_data 是些提供给该 device 的私有数据

1.4.4 最后比较

platform_device.name platform_driver.driver.name

        platform_driver.id_table 可能为空, 这时可以根据 platform_device.name 来寻找同名的 platform_device

二、内核里操作设备树的常用函数 

        内核源码中 include/linux/目录下有很多 of 开头的头文件,of 表示“open firmware”即开放固件

2.1 内核中设备树相关的头文件介绍

设备树的处理过程是:dtb -> device_node -> platform_device

2.1.1 处理 DTB

of_fdt.h // dtb 文件的相关操作函数, 我们一般用不到, 
// 因为 dtb 文件在内核中已经被转换为 device_node 树(它更易于使用)

2.1.2 处理 device_node 

of.h // 提供设备树的一般处理函数, 
// 比如 of_property_read_u32(读取某个属性的 u32 值),
// of_get_child_count(获取某个 device_node 的子节点数)
of_address.h // 地址相关的函数, 
// 比如 of_get_address(获得 reg 属性中的 addr, size 值)
// of_match_device (从 matches 数组中取出与当前设备最匹配的一项)
of_dma.h // 设备树中 DMA 相关属性的函数
of_gpio.h // GPIO 相关的函数
of_graph.h // GPU 相关驱动中用到的函数, 从设备树中获得 GPU 信息
of_iommu.h // 很少用到
of_irq.h // 中断相关的函数
of_mdio.h // MDIO (Ethernet PHY) API
of_net.h // OF helpers for network devices. 
of_pci.h // PCI 相关函数
of_pdt.h // 很少用到
of_reserved_mem.h // reserved_mem 的相关函数

 2.1.3 处理 platform_device

of_platform.h // 把 device_node 转换为 platform_device 时用到的函数, 
 // 比如 of_device_alloc(根据 device_node 分配设置 platform_device), 
 // of_find_device_by_node (根据 device_node 查找到 platform_device),
 // of_platform_bus_probe (处理 device_node 及它的子节点)
of_device.h // 设备相关的函数, 比如 of_match_device

2.2 platform_device 相关的函数

        of_platform.h 中声明了很多函数,但是作为驱动开发者,我们只使用其中 的 1、2 个。其他的都是给内核自己使用的,内核使用它们来处理设备树,转换得到 platform_device

2.2.1 of_find_device_by_node

函数原型为:

extern struct platform_device *of_find_device_by_node(struct device_node *np);

         设备树中的每一个节点,在内核里都有一个 device_node;你可以使用 device_node 去找到对应的 platform_device

2.2.2 platform_get_resource

        这个函数跟设备树没什么关系 , 但是设备树中的节点被转换为platform_device 后,设备树中的 reg 属性、interrupts 属性也会被转换为“resource”

        这时,你可以使用这个函数取出这些资源

函数原型为:

/**
* platform_get_resource - get a resource for a device
* @dev: platform device
* @type: resource type // 取哪类资源?IORESOURCE_MEM、IORESOURCE_REG
*                      // IORESOURCE_IRQ 等
* @num: resource index // 这类资源中的哪一个?
*/
struct resource *platform_get_resource(struct platform_device *dev,
                             unsigned int type, unsigned int num);

        对于设备树节点中的 reg 属性,它对应 IORESOURCE_MEM 类型的资源; 

        对于设备树节点中的 interrupts 属性,它对应 IORESOURCE_IRQ 类型的资源

2.3 有些节点不会生成 platform_device,怎么访问它们

        内核会把 dtb 文件解析出一系列的 device_node 结构体,我们可以直接访问这些 device_node

        内核源码 incldue/linux/of.h 中声明了 device_node 属性 property 的操作函数device_nodeproperty 的结构体定义如下:

2.3.1  找到节点

(1)of_find_node_by_path

        根据路径找到节点,比如“/”就对应根节点,“/memory”对应 memory 节点

函数原型:

static inline struct device_node *of_find_node_by_path(const char *path);

 (2)of_find_node_by_name

        根据名字找到节点,节点如果定义了 name 属性,那我们可以根据名字找到它

函数原型:

extern struct device_node *of_find_node_by_name(struct device_node *from,const char *name);

        参数 from 表示从哪一个节点开始寻找,传入 NULL 表示从根节点开始寻找。 

        但是在设备树的官方规范中不建议使用“name”属性,所以这函数也不建议使用。

(3)of_find_node_by_type

        根据类型找到节点,节点如果定义了 device_type 属性,那我们可以根据类型找到它。

函数原型:

extern struct device_node *of_find_node_by_type(struct device_node *from, const char *type);

        参数 from 表示从哪一个节点开始寻找,传入 NULL 表示从根节点开始寻找。

        但是在设备树的官方规范中不建议使用“device_type”属性,所以这函数也不建议使用。

(4)of_find_compatible_node 

        根据 compatible 找到节点,节点如果定义了 compatible 属性,那我们可以根据 compatible 属性找到它。

 函数原型:

extern struct device_node *of_find_compatible_node(struct device_node *from, cons
                                                    t char *type, 
                                                    const char *compat);

⚫ 参数 from 表示从哪一个节点开始寻找,传入 NULL 表示从根节点开始寻找。

⚫ 参数 compat 是一个字符串,用来指定 compatible 属性的值

⚫ 参数 type 是一个字符串,用来指定 device_type 属性的值,可以传入 NULL。

(5) of_find_node_by_phandle

        根据 phandle 找到节点。dts 文件被编译为 dtb 文件时,每一个节点都有一个数字 ID,这些数字 ID 彼此不同。可以使用数字 ID 来找到 device_node。 这些数字 ID 就是 phandle

函数原型:

extern struct device_node *of_find_node_by_phandle(phandle handle);

参数 from 表示从哪一个节点开始寻找,传入 NULL 表示从根节点开始寻找。 

(6)of_get_parent

·        找到 device_node 的父节点

函数原型:

extern struct device_node *of_get_parent(const struct device_node *node);

参数 from 表示从哪一个节点开始寻找,传入 NULL 表示从根节点开始寻找。 

(7)of_get_next_parent

        这个函数名比较奇怪,怎么可能有“next parent”?

        它实际上也是找到 device_node 的父节点,跟 of_get_parent 的返回结果是一样的。

        差别在于它多调用下列函数,把 node 节点的引用计数减少了 1。这意味着调用 of_get_next_parent 之后,你不再需要调用 of_node_put 释放 node 节点。

of_node_put(node);

函数原型: 

extern struct device_node *of_get_next_parent(struct device_node *node);

 参数 from 表示从哪一个节点开始寻找,传入 NULL 表示从根节点开始寻找。

(8)of_get_next_child

        取出下一个子节点。         

函数原型:

extern struct device_node *of_get_next_child(const struct device_node *node,
                                            struct device_node *prev);

 ⚫ 参数 node 表示父节点

 ⚫ prev 表示上一个子节点,设为 NULL 时表示想找到第 1 个子节点。

         不断调用 of_get_next_child 时,不断更新 pre 参数,就可以得到所有的子节点。

(9)of_get_next_available_child

        取出下一个“可用”子节点,有些节点的 status 是“disabled”,那就会跳过这些节点。

函数原型:

struct device_node *of_get_next_available_child( const struct device_node *node,
                                                struct device_node *prev);

 ⚫ 参数 node 表示父节点;

 ⚫ prev 表示上一个子节点,设为 NULL 时表示想找到第 1 个子节点。

(10)of_get_child_by_name

根据名字取出子节点

函数原型:

extern struct device_node *of_get_child_by_name(const struct device_node *node,
                                                const char *name);

 ⚫ 参数 node 表示父节点;

 ⚫ name 表示子节点的名字。

2.3.2 找到属性

        内核源码 incldue/linux/of.h 中声明了 device_node 的操作函数,当然也包括属性的操作函数:of_find_property

        找到节点中的属性

函数原型:

extern struct property *of_find_property(const struct device_node *np,
                                            const char *name,
                                            int *lenp);

⚫ 参数 np 表示节点,我们要在这个节点中找到名为 name 的属性。 

⚫ lenp 用来保存这个属性的长度,即它的值的长度。

        在设备树中,节点大概是这样:

xxx_node {
     xxx_pp_name = “hello”;
};

        上述节点中,“xxx_pp_name”就是属性的名字,值的长度是 6。

2.3.3 获取属性的值

(1)of_get_property

        根据名字找到节点的属性并且返回它的值

函数原型:

/*
* Find a property with a given name for a given node
* and return the value.
*/
const void *of_get_property(const struct device_node *np,
                            const char *name,
                            int *lenp)

 ⚫ 参数 np 表示节点,我们要在这个节点中找到名为 name 的属性然后返回它的值

 ⚫ lenp 用来保存这个属性的长度,即它的值的长度。

(2)of_property_count_elems_of_size

        根据名字找到节点的属性,确定它的值有多少个元素(elem)

函数原型:

* of_property_count_elems_of_size - Count the number of elements in a property
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @elem_size: size of the individual element
*
* Search for a property in a device node and count the number of elements of
* size elem_size in it. Returns number of elements on sucess, -EINVAL if the
* property does not exist or its length does not match a multiple of elem_size
* and -ENODATA if the property does not have a value.
*/
int of_property_count_elems_of_size(const struct device_node *np,
                                    const char *propname,
                                    int elem_size)

        参数 np 表示节点,我们要在这个节点中找到名为 propname 的属性,然后返回下列结果: 

return prop->length / elem_size;

        在设备树中,节点大概是这样: 

xxx_node {
     xxx_pp_name = <0x50000000 1024> <0x60000000 2048>;
};

⚫ 调用 of_property_count_elems_of_size(np, “xxx_pp_name”, 8)时,返回值是 2;

⚫ 调用 of_property_count_elems_of_size(np, “xxx_pp_name”, 4)时,返回值是 4。

 (3)读整数 u32/u64

函数原型为:

static inline int of_property_read_u32(const struct device_node *np,
                                       const char *propname,
                                       u32 *out_value);

extern int of_property_read_u64(const struct device_node *np,
                                const char *propname,
                                u64 *out_value);

 在设备树中,节点大概是这样:

xxx_node {
     name1 = <0x50000000>;
     name2 = <0x50000000 0x60000000>;
};

⚫ 调用 of_property_read_u32 (np, “name1”, &val)时,val 将得到值 0x50000000;

⚫ 调用 of_property_read_u64 (np, “name2”, &val)时,val 将得到值 0x6000000050000000。

(4)读某个整数 u32/u64 

函数原型为:

extern int of_property_read_u32_index(const struct device_node *np,
                                      const char *propname,
                                      u32 index, u32 *out_value);

在设备树中,节点大概是这样:

 

xxx_node {
     name2 = <0x50000000 0x60000000>;
};

 ⚫ 调用 of_property_read_u32 (np, “name2”, 1, &val)时,val 将得到值 0x60000000。

(5)读数组

函数原型为:

int of_property_read_variable_u8_array(const struct device_node *np,
                                       const char *propname,
                                       u8 *out_values,
                                       size_t sz_min, size_t sz_max);
int of_property_read_variable_u16_array(const struct device_node *np,
                                        const char *propname,
                                        u16 *out_values,
                                        size_t sz_min, size_t sz_max);
int of_property_read_variable_u32_array(const struct device_node *np,
                                        const char *propname,
                                        u32 *out_values,
                                        size_t sz_min, size_t sz_max);
int of_property_read_variable_u64_array(const struct device_node *np,
                                        const char *propname,
                                        u64 *out_values,
                                        size_t sz_min, size_t sz_max);

        在设备树中,节点大概是这样:

xxx_node {
     name2 = <0x50000012 0x60000034>;
};

         上述例子中属性 name2 的值,长度为 8。

⚫ 调用 of_property_read_variable_u8_array (np, “name2”, out_values, 1, 10)时, out_values 中将会保存这 8 个字节: 0x12,0x00,0x00,0x50,0x34,0x00,0x00,0x60

⚫ 调用 of_property_read_variable_u16_array (np, “name2”, out_values, 1, 10)时, out_values 中将会保存这 4 个 16 位数值: 0x0012, 0x5000,0x0034,0x6000。 总之,这些函数要么能取到全部的数值,要么一个数值都取不到;

⚫ 如果值的长度在 sz_min 和 sz_max 之间,就返回全部的数值

⚫ 否则一个数值都不返回。

(6)读字符串

函数原型为: 

int of_property_read_string(const struct device_node *np, 
                            const char *propname,
                            const char **out_string);

⚫ 返回节点 np 的属性(名为 propname)的值;

⚫ (*out_string)指向这个值,把它当作字符串。 

三、怎么修改设备树文件 

        一个写得好的驱动程序, 它会尽量确定所用资源。只把不能确定的资源留给设备树, 让设备树来指定。根据原理图确定"驱动程序无法确定的硬件资源", 再在设备树文件中填写对应内容。

3.1 使用芯片厂家提供的工具

        有些芯片,厂家提供了对应的设备树生成工具,可以选择某个引脚用于某些功能,就可以自动生成设备树节点。

         你再把这些节点复制到内核的设备树文件里即可。

3.2 看绑定文档

        内核文档 Documentation/devicetree/bindings/

        做得好的厂家也会提供设备树的说明文档

3.3 参考同类型单板的设备树文件

3.4 网上搜索

3.5 自己研究驱动源码

设备树在驱动中的使用

大佬觉得有用的话点个赞 👍🏻 呗。
❤️❤️❤️本人水平有限,如有纰漏,欢迎各位大佬评论批评指正!😄😄😄

💘💘💘如果觉得这篇文对你有帮助的话,也请给个点赞、收藏下吧,非常感谢!👍 👍 👍

🔥🔥🔥任务在无形中完成,价值在无形中升华,让我们一起加油吧!🌙🌙🌙

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1432161.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

344. Reverse String(反转字符串)

题目描述 编写一个函数&#xff0c;其作用是将输入的字符串反转过来。输入字符串以字符数组 s 的形式给出。 不要给另外的数组分配额外的空间&#xff0c;你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。 问题分析 以中间字符为轴&#xff0c;将两边的字符对换…

【Vue】组件间通信的7种方法(全)

目录 组件之前的通信方法 1. props/$emit 2.parent/children 3.ref 4.v-model 5.sync 6.attrs,attrs,attrs,listeners 7.provide/inject 7.eventBus 组件之前的通信方法 1. props/$emit 父传子 props 这个只能够接收父组件传来的数据 不能进行修改 可以静态传递 也可…

day35 柠檬水找零 根据身高重建队列 用最少数量的箭引爆气球

题目1&#xff1a;860 柠檬水找零 题目链接&#xff1a;860 柠檬水找零 题意 一杯柠檬水5美元&#xff0c;每位顾客只买一杯柠檬水&#xff0c;支付5美玉&#xff0c;10美元&#xff0c;20美元&#xff0c;必须正确找零 开始时并没有零钱 若可以正确找零&#xff0c;则返回…

操作系统透视:从历史沿革到现代应用,剖析Linux与网站服务架构

目录 操作系统 windows macos Linux 服务器搭建网站 关于解释器的流程 curl -I命令 名词解释 dos bash/terminal&#xff0c;(终端) nginx/apache&#xff08;Linux平台下的&#xff09; iis&#xff08;Windows平台下的&#xff09; GUI(图形化管理接口&#xff…

python coding with ChatGPT 打卡第16天| 二叉树:完全二叉树、平衡二叉树、二叉树的所有路径、左叶子之和

相关推荐 python coding with ChatGPT 打卡第12天| 二叉树&#xff1a;理论基础 python coding with ChatGPT 打卡第13天| 二叉树的深度优先遍历 python coding with ChatGPT 打卡第14天| 二叉树的广度优先遍历 python coding with ChatGPT 打卡第15天| 二叉树&#xff1a;翻转…

机器翻译后的美赛论文怎么润色

美赛论文的语言表达一直是组委会看重的点&#xff0c;清晰的思路和地道的语言在评审中是重要的加分项。 今天我们就来讲讲美赛论文的语言问题。 我相信有相当一部分队伍在打美赛的时候&#xff0c;出于效率的考量&#xff0c;都会选择先写中文论文&#xff0c;再机翻成英文。 …

海外盲盒系统搭建,加快盲盒企业出海进程

盲盒作为我国的潮流消费模式&#xff0c;融入了潮流、艺术、动漫等多种元素&#xff0c;吸引了使得越来越多的“Z世代”玩家进入到盲盒市场&#xff0c;促进了市场的迅速扩大&#xff0c;同时也吸引了众多企业入场&#xff0c;“盲盒经济”迅速走红。 盲盒走向海外市场 随着盲…

安装配置Oracle 11g 、PLSQL及使用Navicat远程连接Oracle

目录 一、下载 二、安装 1.执行安装程序 2.配置安全更新 3.安装选项 4.系统类 5.网络安装选项 6.选择安装类型 7.选择产品语言 8.选择数据库版本 9.指定安装位置 10.选择配置类型 ​编辑11.指定数据库标识符 12.指定配置选项 13.电子邮箱 14.指定数据库存储…

寒假思维训练day17 C. Equal Frequencies

不知不觉已经过了差不多一个月了&#xff0c;坚持一件事情还是有点收获的&#xff0c;今天更新一道1600的构造。 寒假训练计划day17 摘要&#xff1a; Part1 题意 Part2 题解 (有数学推导&#xff0c;latex形式) Part3 代码 (C版本&#xff0c;有详细注释) Part4 我对构造题…

Linux Zip解压缩命令

Zip 用法 $ zip [-选项] [-b 路径] [-t 日期] [-n 后缀名] [压缩文件列表] [-xi 列表] 默认操作是添加或替换压缩文件列表中的压缩文件条目&#xff0c;压缩文件列表可以包括特殊名称 -&#xff0c;压缩标准输入数据 Zip 是一个创建和管理 zip 文件的压缩工具 Unzip 是一个用…

使用 Python 进行自然语言处理第 3 部分:使用 Python 进行文本预处理

一、说明 文本预处理涉及许多将文本转换为干净格式的任务&#xff0c;以供进一步处理或与机器学习模型一起使用。预处理文本所需的具体步骤取决于具体数据和您手头的自然语言处理任务。 常见的预处理任务包括&#xff1a; 文本规范化——将文本转换为标准表示形式&#xff0c;…

初识C语言·编译与链接

1 翻译环境和运行环境 C语言标准ANSI C 实现C语言代码的时候 一般需要经过两种环境&#xff0c;一是翻译环境&#xff0c;二是运行环境&#xff0c;计算机能识别的是二进制的指令&#xff0c;人写完代码后通过翻译环境&#xff0c;使代码变成计算机能读懂的可执行的机器指令&a…

伦敦金重点知识:控制亏损的方法

在很多人的预期中&#xff0c;伦敦金重点知识肯定是那些涉及市场分析的方法&#xff0c;那些方法能帮助投资者一把抓住交易机会&#xff0c;在市场中建立优势。但笔者要说的是&#xff0c;那些方法固然重要&#xff0c;但笔者认为还有更加重要的&#xff0c;那就是控制亏损。控…

大模型增量预训练新技巧:解决灾难性遗忘

大家好&#xff0c;目前不少开源模型在通用领域具有不错的效果&#xff0c;但由于缺乏领域数据&#xff0c;往往在一些垂直领域中表现不理想&#xff0c;这时就需要增量预训练和微调等方法来提高模型的领域能力。 但在领域数据增量预训练或微调时&#xff0c;很容易出现灾难性…

LLM大模型

LLM 学习链接 &#xff1a; 大语言模型 LLM行业背景和市场需求 大模型的涌现能力 大模型核心前沿 大模型应用范式和职业规划

大数据 - Spark系列《四》- Spark分布式运行原理

Spark系列文章&#xff1a; 大数据 - Spark系列《一》- 从Hadoop到Spark&#xff1a;大数据计算引擎的演进-CSDN博客 大数据 - Spark系列《二》- 关于Spark在Idea中的一些常用配置-CSDN博客 大数据 - Spark系列《三》- 加载各种数据源创建RDD-CSDN博客 目录 &#x1f360;…

200行C++代码写一个网络调试助手(TCP服务端TCP客户端)

前言 今天分享一个200行C代码写成的QT网络调试助手。 可以先看看效果 。 因为我不喜欢用QT Designer&#xff0c;因此我用的组件都是使用代码布局的&#xff0c;所以需要设计一下布局。 界面是参考的之前写的串口助手&#xff0c;就是把里面的逻辑改了改&#xff0c;因此外观…

关于网络面试题汇总

什么是TCP/IP五层模型&#xff1f;它们的作用是啥&#xff1f;基于TCP/IP实现的应用&#xff08;层协议&#xff09;有哪些&#xff1f; TCP/IP五层模型&#xff0c;从上向下分别是&#xff1a; 应用层&#xff1a;应用程序本身&#xff0c;应用层的作用是负责应用程序之间的…

比特币ETF广告战大爆发!

作者&#xff1a;秦晋 贝莱德主动发起广告攻势。 2月1日&#xff0c;据外媒Cryptoslate报道&#xff0c;贝莱德在提交给美国SEC的一份文件中显示&#xff0c;其提出一项在建筑物侧面投影比特币ETF广告计划。 据介绍&#xff0c;广告内容为&#xff1a;「IBIT」信号是一个以迈阿…

IP风险画像在企业网络安全中应用

随着企业数字化的不断深入&#xff0c;网络安全问题日益突显。IP风险画像作为一种综合性的网络安全工具&#xff0c;为企业提供了更全面的风险评估和防范手段。本文将结合一个实际案例&#xff0c;深入探讨IP风险画像在企业网络安全中的成功应用。 案例背景 一家大型金融机构…